每个老师需要在上课前弄好自己的教案课件,是认真规划好自己教案课件的时候了。必须要写好了教案课件计划,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?以下是小编收集整理的“图形的相似与位似”,供您参考,希望能够帮助到大家。
一、选择题
1.(2011广东东莞)将左下图中的箭头缩小到原来的,得到的图形是()
2.(2011浙江省)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()
A.2:5B.14:25C.16:25D.4:21
第2题第4题第6题
3.(2011浙江台州)若两个相似三角形的面积之比为1:4,则它们的周长之比为()
A.1:2B.1:4C.1:5D.1:16
4.(2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()
(A)(B)(C)(D)
5.(2011甘肃兰州)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。其中真命题的个数是()
A.1B.2C.3D.4
6.(2011山东聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()
A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)
7.(2011四川广安)下列命题中,正确的是()
A.过一点作已知直线的平行线有一条且只有一条B.对角线相等的四边形是矩形
C.两条边及一个角对应相等的两个三角形全等D.位似图形一定是相似图形
8.(2011綦江)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.1:
9.(2011山东泰安)如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()
A.EDEA=DFABB.DEBC=EFFBC.BCDE=BFBED.BFBE=BCAE
10.(2011山东潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:⑴DE=1;⑵△ADE∽△ABC;⑶△ADE的面积与△ABC的面积之比为1:4。其中正确的有()
A.0个B.1个C.2个D.3个
第9题第10题第11题第12题
11.(2011湖南怀化)如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3,则CE的
值为()A.9B.6C.3D.4
12.(2011江苏无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成
①、②、③、④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确
的是()
A.①和②相似B.①和③相似C.①和④相似D.②和④相似
13.(2011广东肇庆)如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()
A.7B.7.5C.8D.8.5
第13题第15题第17题
14.(2011湖南永州)下列说法正确的是()
A.等腰梯形的对角线互相平分.
B.一组对边平行,另一组对边相等的四边形是平行四边形.
C.线段的垂直平分线上的点到线段两个端点的距离相等.
D.两边对应成比例且有一个角对应相等的两个三角形相似.
15.(2011山东东营)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()
A.B.C.D.
16.(2011重庆市潼南)若△ABC~△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为()A.2:1B.1:2C.4:1D.1:4
17.(2011湖北荆州)如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()
A.1对B.2对C.3对D.4对
二、填空题
1.(2011四川重庆)如图,△ABC中,DE∥BC,DE分别交边AB、AC于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为.
2.(2011江苏苏州)如图,已知△ABC的面积是的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于__________(结果保留根号).
第1题第2题
三、解答题
1.(2011湖南怀化)如图8,△ABC,是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M.
(1)求证:
(2)求这个矩形EFGH的周长.
2.(2011河北)如图10,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
3.(2011湖北武汉市)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.
(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证MN2=DMEN.
27.1图形的相似1
学习目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比.
学习过程:
一、依标独学
1、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?
2、小组讨论、交流.得到相似图形的概念.
相似图形
3、如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
二、围标群学
实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?
成比例线段:对于四条线段,如果其中两条线段的比与另两条线段的比相等,如(即),我们就说这四条线段是成比例线段,简称比例线段.
【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;
(2)四条线段成比例,记作或;
(3)若四条线段满足,则有.
小应用:一张桌面的长,宽,那么长与宽的比是多少?
(1)如果,,那么长与宽的比是多少?
(2)如果,,那么长与宽的比是多少?
三、扣标展示(展示点评)
四、达标测评(当堂训练)
已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
分析:根据比例尺=,可求出北京到上海的实际距离.
五、课后反思
文章来源:http://m.jab88.com/j/75768.html
更多