88教案网

七上数学线段、射线、直线教案(湘教版)

做好教案课件是老师上好课的前提,大家正在计划自己的教案课件了。只有写好教案课件计划,可以更好完成工作任务!你们知道多少范文适合教案课件?为此,小编从网络上为大家精心整理了《七上数学线段、射线、直线教案(湘教版)》,希望对您的工作和生活有所帮助。

4.2线段、射线、直线
第1课时
【教学目标】
知识与技能
1.在现实情境中感受线段、射线、直线等简单平面图形的广泛应用.
2.理解线段、射线、直线等概念的意义,掌握它们的表示方法.
3.掌握并会应用“两点确定一条直线”这一定理.
过程与方法
通过操作,了解“两点确定一条直线”,积累操作活动经验,初步感受说理的过程.
情感态度
通过练习,使学生学会在活动中与人合作,并养成与他人交流思维的良好学习习惯.
教学重点
线段、射线、直线的意义及直线的性质及其应用.
教学难点
点与直线的位置关系、直线的性质.
【教学过程】
一、情景导入,初步认知
观察下列图片,你们能在其中发现我们所熟知的几何图形吗?
【教学说明】利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形.让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情.
二、思考探究,获取新知
1.下图中,可以近似的看做线段、射线、直线的分别有哪些?
【归纳结论】笔直的路灯等实物都给我们以线段的形象,线段有两个端点.线段向一端无限延长形成了射线,射线有一个端点.线段向两端无限延长形成了直线,直线没有端点.
2.线段、射线、直线有什么联系与区别呢?请相互交流,完成下表:
图形
名称图形
画法表示
方法端点
个数延伸
方向能否
度量
线段线段AB
(或BA)2不可延伸能
射线射线AB
射线BA1沿AB方向
沿BA方向否
直线直线l0两端否

【教学说明】让学生了解线段、射线、直线的规范的表示方法,并加深对线段、射线、直线的本质性的理解.练习有助于学生理解线段、射线、直线的联系和区别.同时可以巩固对表示方法的掌握.教师应充分调动他们的积极性,让他们广泛参与、积极主动的学习.
3.动手画一画,点与直线有几种位置关系?
【归纳结论】点在直线上或点在直线外.也可以说成直线经过这个点或直线不经过这个点.
4.当两条不同的直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点.
5.探究:(1)如图,用尽可能少的钉子把木条固定在木板上,问至少要几颗?
(2)过一个点可以画几条直线?过两个点呢?
【归纳结论】过两点有且只有一条直线.简称两点确定一条直线.
【教学说明】让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生相互协作、猜想验证、反思生活.实际教学中学生纷纷想办法解决问题,老师适当激励,能极大地调动学生参与的热情和主观能动性,把课堂气氛推向一个高潮.这样符合学生的年龄特点和认知特点.
三、运用新知,深化理解
1.如果你想将一根细木条固定在墙上,至少需要几个钉子(B)
A.一个B.两个
C.三个D.无数个
2.下列说法不正确的是(B)
A.线段AB和线段BA是同一条线段
B.射线AB和射线BA是同一条射线
C.直线AB和直线BA是同一条直线
3.下列说法正确的是(D)
A.延长直线AB到C;
B.延长射线OA到C;
C.平角是一条直线;
D.延长线段AB到C.
4.下列四个图中的线段(或直线、射线)能相交的是(A)
A.(1)B.(2)C.(3)D.(4)
5.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点探出一条墨线.这个理由是.
答案:两点确定一条直线
6.(1)如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段,请写出来.
(2)如图(2)直线l上有3个点,则图中有条可用图中字母表示的射线,有条线段.
答案:(1)射线A1A2,射线A2A1,线段A1A2.(2)43.
7.用恰当的几何语言描述图形,图(1)可描述为:图(2)可描述为.
答案:点A在直线l上;直线a与直线b相交于点O.
8.如图,平面上有A、B、C、D4个点,根据下列语句画图.
(1)画线段AC、BD交于点F;
(2)连接AD,并将其反向延长;
(3)取一点P,使点P既在直线AB上又在直线CD上.
解:所画图形如下:
9.如图,在已有的线段中,能用大写字母表示不同线段共有多少条.
解:线段AC上有线段3条;
AB上有线段3条;
BC上有线段3条;
AD上有线段3条;
BE上有线段3条;
CF上有线段3条;
∴共有3×6=18条线段.
【教学说明】检测学生的达标情况和巩固练习,同时为学有余力的学生设置了稍具难度和有创新思维的问题,以满足不同学生在数学发展方面的需要.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.
【课后作业】
布置作业:教材“习题4.2”中第1、2、7题.
第2课时
【教学目标】
知识与技能
1.会用尺规画一条线段等于已知线段,会比较两条线段的长短.
2.掌握并能应用“两点之间线段最短”这一定理.
过程与方法
通过班级学生之间合作及操作探究,引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力.
情感态度
培养学生动手操作能力.
教学重点
线段的大小比较,画一条线段等于已知线段.
教学难点
画一条线段等于已知线段的尺规作图方法.
【教学过程】
一、情景导入,初步认知
1.在班上点两个个子差别不大的学生都坐着,他们谁高谁矮?怎么比较?
2.看一看:下列图形,分别比较线段a、b的长短.
【教学说明】利用生活中可以感知的情境,极大激发学生的学习兴趣,使学生感受生活中所蕴含的数学道理.让学生感受从实际问题中抽象出所要比较的线段大小的过程.
二、思考探究,获取新知
1.怎样比较下列线段AB,CD的长短呢?
可以采用度量法、折叠法.
2.折叠法:将线段CD移到AB上,使点C与点A重合,点B与D都在A的同侧.这时可能出现以下情况.
图形线段AB与CD的关系记作
AB小于CDABCD
AB等于CDAB=CD
AB大于CDABCD

3.如下图,点C落在线段AB的延长线上,设AB=a,AC=b,BC=c,则线段AC就是a与c的和,叫做b=a+c;线段BC就是b与a的差,记作c=b-a.
【教学说明】这样的设计能让学生体会方法的获得过程,同时可以巩固对表示方法的掌握.教师应关注全体学生、充分调动他们的积极性,让他们广泛参与、积极主动的学习.
4.杭州湾跨海大桥是跨越杭州湾的便捷通道,大桥北起嘉兴市,跨越宽阔的杭州湾海域后至于宁波市,全长36km,大桥建成后宁波至上海间的陆路距离缩短了约120km,你知道是根据什么道理吗?
5.从A地到B地,有3条路,走哪条路最近呢?为什么?
6.根据上面的两个实际问题,你能得到什么道理?
【归纳结论】两点之间的所有连线中,线段最短.简称“两点之间线段最短”.
连接两点的线段的长度叫做两点之间的距离.
7.你能用圆规画出一条线段等于已知线段吗?
【教学说明】小组合作交流画法。师演示,归纳出三步骤:1.画出射线;2.度量已知线段;3.移到射线上.
8.如图,已知线段,借助圆规和直尺作一条线段使它等于这条已知线段.
作法:
(1)作射线AD;
(2)在AD上顺次截取AB=BC;
(3)则BC就是所要求作的线段.
【归纳结论】用圆规和没有刻度的直尺作图的方法叫尺规作图法.
如点B在线段AC上,且把线段AC分成相等的两条线段,那么点B叫做线段AC的中点.
【教学说明】让学生自己在动手操作中去真正的感受用尺、规作图,并使学生用语言口头表述做法,并开始有作图痕迹意识,即让别人看清楚你的作图方法.
三、运用新知,深化理解
1.教材P121例2.
2.如图,CB=AB,AC=AD,AB=AE,若CB=2cm,则AE=(D)
A.6cmB.8cmC.10cmD.12cm
3.点B把线段AC分成两条相等的线段,点B就叫做线段AC的,这时,有AB=,AC=BC,AB=BC=AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD的.
答案:中点;BC;2;;三等分点.
4.如图,点C分AB为2∶3,点D分AB为1∶4,若AB为5cm,则AC=cm,BD=cm,CD=cm.
答案:241
5.如图,从A到B有4条道路,为了节约时间,你会选择条路.原因是.
答案:第3;两点之间线段最短.
6.比较下列各组线段的长短
(1)
线段OA与OB.
(2)
线段AB与AD.
(3)
线段AB、BC与AC.
答案:(1)OBOA;(2)ADAB;(3)BCACAB
7.在桌面上放了一个正方体的盒子,一只蚂蚁在顶点A处,它要爬到顶点B处,你能帮助蚂蚁设计一条最短的爬行路线吗?
答案:将正方体展开如图所示
连接AB交CE于M,则蚂蚁沿A→M→B爬行路线最短.
8.已知线段a,b,c(ab),画一条线段使它等于a-b+c.
解:线段AB=a,BC=b,CD=c,线段AD即为a-b+c.
作法:(1)画一条线段AB=a;
(2)以B为圆心,b为半径在B左侧截取BC=b,交AB为C;
(3)以C为圆心,c为半径在C右侧作弧交线段AB的延长线于D.
则:AD长为所求作的线段(a-c+b).
9.如图所示,已知线段a、b、c(abc),画一条线段,使它等于:
(1)2a-b+2c;(2)3a+c-2b.
解:(1)首先画射线OM,在射线上依次截取线段a,a,c,c,再以O为端点,在射线OM上截取OB=b即可;线段BD即为所求.
(2)首先画射线OM,在射线OM上依次截取线段a,a,a,c,再以O为端点,在射线上截取OA=2b即可;线段AB即为所求.
【教学说明】设置本环节的目的就是为了检测学生的达标情况和巩固练习,大部分题目设置的出发点仍在于检测本节课所学,但不排除适当难度的设置,所以教师要多巡视指导,注重鼓励.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
【课后作业】
布置作业:教材“习题4.2”中第3、4、5题.

相关阅读

线段,射线,直线


教案课件是老师需要精心准备的,是认真规划好自己教案课件的时候了。认真做好教案课件的工作计划,才能促进我们的工作进一步发展!有没有出色的范文是关于教案课件的?下面是小编精心为您整理的“线段,射线,直线”,欢迎阅读,希望您能够喜欢并分享!

线段,射线,直线
第12,13次课
【知识要点】
线段、射线、直线
1.理解线段的概念要掌握它的三个特征:;;;
2.射线:将线段向方向就形成了射线,射线有端点。
3.直线:将线段向方向就形成了直线。
4.直线的性质:①直线是向,无,不可,不能;②直线上有点;③经过一点的直线有条;④两条不同直线至多有公共点。
【典型例题】
例1(1)下列说法正确的有:
①一条线段上只有两个点
②线段AB与线段BA是同一条线段
③经过两点的直线只有一条
④射线AB与射线BA是同一条射线
⑤线段AB是直线AB的一部分
⑥两点之间,线段最短
⑦端点不同的射线一定不是同一条射线
⑧端点相同的射线一定是同一条射线
(2)下列说法正确的是()
A.过A、B两点直线的长度是A、B两点间的距离
B.线段A、B就是A、B两点间的距离
C.在连结A、B两点的所有线中,其中最短线的长度是A、B两点间的距离
D.乘火车从上海到北京要走1462千米,所以上海站与北京站之间的距离是1462千米
(3)已知点M在线段AB上,在①AB=2AM;②BM=AB;③AM=BM;④AM+BM=AB四个式子中,能说明M是线段AB的中点的式子有()
A.1个B.2个C.3个D.4个

(4)在直线上顺次取A、B、C三点,使得AB=9cm,BC=4cm,如果点O是线段AC的中点,则线段OB为()cm
A.2.5B.3.5C.1.5D.5
(5)如果线段AB=13cm,MA+MB=17cm,那么下面说法正确的是()
A.M点在线段AB上
B.M点在直线AB上
C.M点在直线AB外
D.M点在直线AB上,也可能在AB直线外
(6)如图,3个机器人,A、B、C排成一直线做流水作业,它们都要不断地从一个固定的零件箱中拿零件,则零件箱放在处最好.
(使得各机器人所走的路程总和最小)

例2.如图,在线段AC上取一点B时,共有几条线段?在线段AD上取两点B、C时,共有几条线段?在AB上取三个点C、D、E时,共有几条线段?一条直线上有n个点时,共有多少条线段?

例3.已知线段MN,在MN的延长线上取一点P,使MP=2NP;再在MN的反延长线上取一点Q,使MQ=2MN,那么MP是PQ的()
A.3B.C.D.

例4.如图,A、B、C、D是直线上顺次四点,M、N分别是AB、CD的中点,若MN=a,BC=b,求AD的长.

例5.往返于A、B两地的火车,中途经过三个站点,(假设该车只有硬座,且各站距离不等)问:
(1)有多少种不同的票价?(2)要有多少种不同的车票?
(3)如果中途有n个站点呢?

例6.如图,CB=AB,AC=AD,若CB=2cm,求CD的长.

例7.已知线段AB=6cm,在直线AB上画线段BC=4cm,若M、N分别是AB、BC中点
(1)求M、N间的距离.
(2)若AB=acm,BC=bcm,其它条件不变,此时M、N间的距离是多少?
(3)分析(1)(2)的解答过程,从中你发现了什么规律?在同伴间交流你得到的启迪?

例8、如图所示,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点.求MN:PQ的值.

例9.如图,已知B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6,
求:线段MC的长.

【初试锋芒】
1.把线段向一个方向无限延伸就形成了,向两个方向无限延伸就形成了.
2.下列写法中正确的是()
A.直线AB、CD相交于点nB.直线ab、cd相交于点N
C.直线ab、cd相交于点nD.直线AB、CD相交于点N
3.下列叙述正确的是()
①线段AB可表示为线段BA②射线AB可表示为射线BA③直线AB可表示为直线BA
A.①②B.①③C.②③D.①②③
4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明.
5.如图,A、B、C、D是直线l上顺次四点,且线段AC=5,BD=4,则线段AB-CD等于______.

6.如图,AB=CD,则AC与BD的大小关系是()
A.ACBDB.ACBDC.AC=BDD.不能确定
7.连结两点的____________________________________________,叫做两点间的距离.
8.观察下列图形,并阅读图形下面的相关文字:

像这样,10条直线相交,最多交点的个数是()
A.40个B.45个C.50个D.55个
9.北宋末南宋初,中国象棋基本定型,象棋开始风行全国,中国象棋规定:马走字,现定义:在中国象棋盘上,如图,从点A到点B,马走的最小步数称为A与B的马步距离,记作│AB│m,在图中画出了中国象棋的一部分,上面标有A、B、C、D、E五个点,则在│AB│m,│AC│m,│AD│m,│AE│m中最大的是_______,最小的是______.

10.过平面上四点中任意两点作直线,甲说有一条,乙说有四条,丙说有六条,丁说他们说的都不对,应该是一条或四条,或六条,谁说的对?请画图来说明你的看法.
11.如图,AB=16cm,C是AB上的一点,且AC=10cm,D是AC的中点,E是BC的中点,
求线段DE的长.
12.已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长.

【大展身手】
1.已知数轴的原点为O,如图,点A表示2,点B表示-.
(1)数轴是什么图形?
(2)数轴在原点O左边的部分(包括原点)是什么图形,怎样表示?
(3)数轴上不小于-,且不大于2的部分是什么图形,怎样表示?

2.如图,P为直线外一点,A、B为直线上两点,把P和A、B连起来,一共可以得到多少个三角形?若在直线上增加一个点C,一共可以得到多少个三角形?若直线上有n个点时,一共可以得到多少个三角形?

3.若A,B两点间的距离是20cm,现有一点C,若AC﹢BC=20cm,则点C与线段AB的关系是什么?若AC﹢BC=30cm,则点C与线段AB的关系是什么?若AC﹢BC=10cm,则这样的点C存在吗?

4.根据题意填空:在同一平面内的两条相交直线,它们有1个交点,如果在这个平面内再画第三条直线,那么这三条直线最多可有___________个交点;如果在这个平面内再画第四条直线,那么这四条直线最多可有__________个交点,由此我们可以猜想,在同一平面内,六条直线最多可有__________个交点,(为大于1的整数)条直线最多可有_____________个交点.(用含的代数式表示)

5.若线段,C是线段AB上任意一点,M,N分别是AC和BC的中点,则MN=__________.

6.如图,C,D分别是线段AB的三等分点,E,F分别是AC,DB的中点.
求证:(1)EF=AB;(2)EF=BC.

7.已知线段MN,延长MN至Q,使QN=2MN,反向延长MN至P,使PN=2MN.
求证:(1)M是PN的中点;(2)N是PQ的中点.

8.A、B、C是一条公路上三个村庄,C在AB之间,A、B间路程为100千米,A、C间路程为40千米,现在A、B之间设一车站P,设P、C之间路程为千米.
(1)用含的代数式表示车站到三个村庄的路程之和
(2)若车站到三个村庄路程之和为102千米,车站应设在何处
(3)若要使车站到三个村庄路程总和最小,则车站应设在何处

9.B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、D、E这5个点为端点的所有线段之和等于多少厘米?

直线、射线、线段


教案课件是老师上课中很重要的一个课件,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,这样我们接下来的工作才会更加好!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“直线、射线、线段”,相信能对大家有所帮助。

4.2直线、射线、线段
●教学目标
(一)教学知识点
1.线段、射线、直线的概念、表示法。.
2.直线的性质。.
(二)能力训练要求
1.在现实情景中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。.
2.通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。.
(三)情感与价值观要求
1.通过师生共同活动,使学生了解数学与日常生活有紧密联系,从而提高学生的学习兴趣.。
2.通过交流,来提高学生的几何语言的表达能力。.
●教学重点
1.线段、射线、直线的概念及表示法。.
2.直线的性质公理。.
●教学难点
使用简单的几何语言。.

Ⅰ.巧设情景问题,引入课题
[师]1、播放课件,欣赏图片。
在日常生活中,我们经常看到如下实物或场景:探照灯、人行横道线、高等级公路、铁轨、竖琴、铁轨、手电筒射出的光线……,大家看到的这些图形都是在同一平面内,我们把这些图形叫做平面图形.
2、按照你的想法将上述图片进行分类,并说明你的理由
{让学生感受生活,并从中抽象数学知识,明白数学知识来源于生活。}
从今天开始我们就来研究第四章“平面图形及其位置关系”.这节课先来探讨第一节内容:线段、射线、直线.

Ⅱ.讲授新课
一、对照各张图片,介绍线段、射线、直线的特征及端点
{有目标、有显著特征的图片与抽象的知识比较学习,使数学知识生活化、趣味化。}
[师]竖琴中绷紧的琴弦,马路上的人行横道线都可以近似地看作线段.
线段有两个端点.
将线段向一个方向无限延长就形成了射线.如:手电筒打开后,有一束光线,它可以射向很远很远的地方.这一束光线可以近似地看作射线.探照灯也是一样.
射线有一个端点.
将线段向两个方向无限延长就形成了直线,如笔直的铁轨,公路向两方无限延长,它可以近似地看作直线.
直线没有端点.
现在我们就知道:现实生活中的好多实物都能近似地看成线段、射线或直线。.那大家来想一想、议一议:生活中,有哪些物体可以近似地看作线段、射线、直线?
{学生联系生活实践交流,代表发言,教师纠正并补充,提高参与度,使学习民主化,同时活跃课堂气氛。}
附:[生1]教室中的灯管,桌子的边沿等可近似地看作线段.
[生2]还有校门口的电线杆,铁栏杆也可以近似地看作线段.
[生3]把灯泡想像成一个点,光束射向远方,它可以近似地看作射线.
[师]很好,同学们举了这么多例子来说明什么是直线、射线和线段,现在我们把它们画成图形.大家拿出直尺和铅笔,用直尺来画线段、直线、射线.(学生画图,教师指导)
二、介绍表示方法

在几何里,我们常用字母表示图形,一个点可以用一个大写字母表示,如图(1)中的两点分别用字母A和B表示,这两点分别记作点A和点B.
如图(1)中,以A、B为端点的线段,记作线段AB,或线段BA,有时一条线段也可以用一个小写字母表示,如图(2)中的线段,记作线段a.
由此可知,线段有两种表示方法:
(1)一条线段可以用它的两个端点的大写字母来表示.
(2)一条线段可用一个小写字母来表示.
注意:①表示线段的两个字母没有顺序性,如:线段BA与线段AB表示的是同一条线段.
②表示线段时,在字母的前面一定要写上“线段”两字.
一条射线可以用它的端点和射线上另一点来表示,如图(3)中的射线,可以记作射线OM,其中,表示端点的字母必须写在另一个字母的前面,而且在两个字母的前面要写上“射线”两字.
注意:(1)表示射线的两个大写字母,其中一个一定是端点,并且要把它写在前面.
(2)同一条射线有不同的表示方法.如下图中的射线,可以表示为射线OM,也可表示为射线OA或射线OB.
(3)端点相同的射线不一定是同一条射线,端点不同的射线一定不是同一条射线.
(4)两条射线为同一条射线必须具备的条件a.端点相同;b.延伸的方向相同.
一条直线可以用在这条直线上的两个点来表示,如图(4)中的直线,可以记作直线AB或直线BA;一条直线也可以用一个小写字母表示,如图(5)中的直线,可以记作直线l.
直线也有两种表示法.
强调:(1)表示线段、射线、直线时,都要在字母前面注明“线段”“射线”或“直线”.
(2)用两个大写字母表示直线或线段时,两个字母的地位平等,可以交换位置;表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.
我们研究了直线、射线,线段的概念后,又探讨了它们的表示法.下面大家讨论总结一下:直线、射线、线段的联系和区别.
(学生分组讨论、归纳、总结)
[师生共析]直线、射线、线段都是直的,线段向一个方向延长可得到射线,线段向两方延长得到直线.由此可知:射线、线段都是直线的一部分,线段是射线的一部分,这是三者的联系.
三者的区别:直线可以向两方无限延伸,射线可以向一方无限延伸,线段本身不能延伸,直线没有端点,射线有一个端点,线段有两个端点.
[师]我们也可用表格来表示刚才总结的内容。
好,下面做一练习
三、练一练
1、指出下图中线段、射线、直线分别有多少条?
ABC
2、.如图,请用两种方式分别表示图中的两条直线。.

四、直线的性质
[师]很好,下面大家来画一画,议一议。
(1)过一点A画一条直线,请问可以画几条直线?
(2)过两点A、B可以画几条直线?
(3)用一枚钉子把一根细木条钉在墙上,木条还能动吗?
最少钉几枚钉子才能使细木条保持不动?
(4)由此你可以总结出什么样的数学事实?
(学生进行操作,找结论、归纳)
[生1]过一点A可以画无数条直线.
经过两点只能画一条直线.
[生2]要想将一根木条钉在墙上,至少要2个钉子.
[生3]老师,我归纳了一条直线性质:经过两点只能画一条直线,对吧?!
[师]对,经过两点有且只有一条直线,这是直线的一条性质.
你能举出一个能反映这一性质的实际例子吗?
[生4]栽树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线.
[生5]建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙.
[师]同学们表现得真棒,在现实生活中,应用“两点确定一条直线”这一性质的例子很多,大家在课外可仔细观察.

Ⅲ、课堂提高
1、数学游戏:真真假假
(1)线段有两个端点,射线有一个端点,直线没有端点.()
(2)直线AB长1000000米.()
(3)射线比直线短一半.()
(4)直线AB和直线BA是同一条直线.()
(5)射线BA和射线AB是同一条射线。()
2、讨论:
(1)过同一平面上的三个点中的任两个点,可以画几条直线?
(2)过同一平面上的四个点中的任两个点,可以画几条直线?
在生活中,不仅直线的性质应用广泛,线段本身也应用广泛,它可以构成一些美丽的图案。.下面大家“读一读”.

课本P136“读一读”
线段构成的美丽图案
上面的图案漂亮吗?这些图案中似乎包含了一些曲线,其实它们都是由多条线段构成的,不信的话,请按照下面的步骤试一试.
(1)画一个角.
(2)在角的两边取距离相等的点.
(3)将这些点按如图办法编上号码.
(4)把号码相同的点用线段连起来.
看一看,你得到了什么图案,有趣吗?
利用这个办法尝试画出上面的图案,你也可以发挥想像,自己创作出更有趣的图案来.
Ⅳ.课时小结
{学生自主小结,锻炼总结概括力、口头表达能力}
三个图形;两种表示方法,一条性质。
Ⅴ.布置作业

4.2直线、射线、线段教案


4.2直线、射线、线段教案
一、教学目标
1、知识与技能:解两点确定一条直线等事实;掌握直线、射线、线段的表示方法;理解直线、射线、线段的联系和区别。
2、教学思考:解两点确定一条直线等事实;掌握直线、射线、线段的表示方法;理解直线、射线、线段的联系和区别。通过学习直线、射线、线段的联系和区别,进一步发展学生抽象概括的能力。
3、解决问题:通过对直线、射线性质的研究,体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.
二、教学重点和难点
重点:直线、射线、线段的表示方法及两点确定一条直线。
难点:使用简单的几何语言。
三、教学过程
1、创设问题情境,引入课题问题:
(1)如图1,要在准备好的硬纸板上固定一根木条,使它不能转动,至少需要几个钉子?

(2)通过上述操作,如果把木条抽象成直线,把钉子抽象为点,你能得到什么结论?
(3)如图2,经过一点O画直线,能画出几条?经过两点A、B呢?
.O.B
.A
图2
问题(1)中学生分组活动,动手操作,给出答案。
问题(2)中学生分组进行交流、讨论。
问题(3)中学生动手操作。
2、两点确定一条直线
经过探究,得出关于直线的基本事实:两点确定一条直线。在此基础上给出直线的表示方法。强调说明直线性质的“存在性”和“唯一性”。
3、举例说明:
生活中有哪些事物可以作为直线、射线、线段的原型?
学生独立思考或相互交流,举出生活中的实例。
4、思考:怎样由一条线段得到一条射线或一条直线?
学生动手画图,得出探索式回答。
四、小结:直线、射线、线段的表示方法
两点确定一条直线。
五、布置作业:
P1322题

§4.2直线、射线、线段
(第二课时)
一、教学目标
1、会比较线段的大小;
2、理解线段的和、差及中点的概念,并会用符号语言表示;
3、掌握线段的性质。
二、教学重点和难点
重点:学会两种方法来比较线段的长短;
难点:掌握线段的性质
三、教学过程
(一)课前准备
1、怎样比较两位同学的身高?
2、你会比较下面两条线段的长短吗?
(二)课堂活动
1、问题如何画一条线段等于已知线段?
学生在独立思考的基础上,以小组为单位进行交流、补充.教师对学生的回答进行归纳总结.指出画一条线段等于已知线段有两种方法:(1)如图,作射线AC,在射线AC上截取AB=a.(教师边说边示范尺规作图)

(2)先量出线段a的长度,再画一条等于这个长度的线段.
教师关注:
(1)学生是否发现了两种画一条线段等于已知线段的方法;
(2)学生叙述的完整性、准确性、规范性.
2、(1)怎样比较两位同字的身高?
(2)怎样比较两条线段的大小?
学生分组活动,讨论、实践、交流.教师深入小组参与活动,倾听学生的交流,指导学生完成任务,从而共同总结出两种方法:(1)度量法,(2)叠合法.
教师关注:
(1)学生是否发现了两种比较两位同学身高的方法;
(2)学生的参与程度、合作交流的意识及能力.
学生独立思考和讨论的基础上,请学生把自已的方法进行演示、说明.教师对学生的回答进行规纳总结.指出比较两条线段的大小有两种方法.(1)度量法:用刻度尺分别测量出它们的长度来比较;(2)叠合法:把其中一条线段移到另一条线段上作比较.在此基础上教师给出线段大小的数量表示方法.
3、让学生将一条绳子对折,使绳子的端点重合,你能说说你的感受吗?
学生分组活动、讨论、交流,教师深入小组参与活动,倾听学生交流.
在此活动中教师应关注:
(1)学生的参与程度、合作交流的意识及能力;
(2)学生对中点意义的理解.
四、课堂小结
会比较线段的大小及画法
五、布置作业
P132习题4(1)和(3)

§4.2直线、射线、线段(复习)
(第三课时)
一、教学目标
1、知识与技能:加强直线、射线、线段性质的理解,熟悉直线、射线、线段的表示方法。
2、解决问题:能把直线、射线、线段与实际生活联系起来,并且能利用直线、射线、线段解决一些简单的实际问题。进一步培养学生动手能力和实践能力。
二、教学重点和难点
进一步掌握直线、射线、线段基础知识,在操作中进一步培养学生解决实际问题的能力。
三、教学过程
(一)、回忆所学的知识:直线、射线、线段各有哪些特点?
生独立完成,交流方法。
学生交流后老师再做补充和小结。
(二)、补充练习
1、线段有()个端点,射线有()个端点。直线有()个端点。
2、线段AB=8cm,C是AB的中点,D是BC的中点,A、D两点间的距离是_____cm.
3、如图1,线段、射线或直线的条数是()
图1
A五条线段,三条射线B一条直线,三条线段
C三条线段,三条射线D三条线段,两条射线和一条直线
4、如果点B在线段AC上,点C在线段BD上,那么有()
A点B在线段CD上B点C在线段AB上
CB、C点均在线段AD上D以上都不对
(三)解决实际问题
如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.
四、课堂小结
这节课我们复习了什么内容?你还有什么问题?
学生交流后老师再做补充和小结。

文章来源:http://m.jab88.com/j/24660.html

更多

最新更新

更多