为了促进学生掌握上课知识点,老师需要提前准备教案,大家正在计划自己的教案课件了。只有规划好教案课件计划,这样我们接下来的工作才会更加好!有哪些好的范文适合教案课件的?急您所急,小编为朋友们了收集和编辑了“平面图形及其位置关系复习教案”,欢迎大家阅读,希望对大家有所帮助。
平面图形及其位置关系复习课教案新海实验中学九年级(教)学案
课题课时27平行四边形备课时间2012-4-10
课型复习主备人审核人
考点要求:
1、掌握平行四边形的概念和性质及它们之间的关系
2、以下定理可以作为证明和计算的依据:
平行四边形的对边相等、对角相等、对角线互相平分;一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形.
一、预习准备:
1.完成《导学式》P76-78,了解平行四边形的判定和性质。
2.记录下你的问题和其他同学交流。
二、例题精讲:
例1、将下列图形(1)(2)(3)分别剪一刀后拼成平行四边形、梯形、平行四边形。
例2、如图1,有一张菱形纸片ABCD,,.
(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四
边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,
请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边
形的周长。
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4
中用实线画出拼成的平行四边形。
(注:上述所画的平行四边形都不能与原菱形全等)
周长为__________周长为__________
例3、如图,四边形ABCD是平行四边形,AE⊥BD,CF⊥BD,垂足分别为E、F,连结AF、CE。求证:AF=CE
巩固案
1.下面几组条件中,能判断一个四边形是平行四边形的是()
A.一组对边相等B.两条对角线互相平分
C.一组对边平行D.两条对角线互相垂直
2.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()
A.三角形B.平行四边形
C.矩形D.正方形
3.平行四边形四内角平分线所围成的四边形是()
A.平行四边形B.矩形C.菱形D.正方形
4.在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.
5.以三角形的三个顶点及三边中点为顶点的平行四边形共有个
6.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是cm.
7.如图,在□ABCD中,已知AD=8㎝,AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于
8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=
9.在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的积为1,则平行四边形ABCD面积为
10.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.
(1)证明:当旋转角为时,四边形是平行四边形;
(2)试说明在旋转过程中,线段与总保持相等;
(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.
§4.8平面图形的密铺
知识与技能目标:
1.平面图形的密铺.
2.多边形密铺的条件.
过程与方法目标:
1.经历探索多边形密铺(镶嵌)条件的过程,进一步发展学生的合情推理能力.
2.通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计.
情感态度与价值观目标:
1.在探索活动过程中,培养学生的合作交流意识和一定的审美情感,使学生进一步体会平面图形在现实生活中的广泛应用.
2.在探索性活动中,开发、培养学生的创造性思维,使其理论联系实际.
教学重点
多边形密铺的条件.
教学难点
运用三角形、四边形或正六边形进行简单的密铺设计.
教学方法
启发、讨论式.
教具准备
各种地板图片.
投影片三张:
第一张:做一做(记作§4.8A);
第二张:议一议(记作§4.8B);
第三张:图案(记作§4.8C).
学生用具:剪刀、硬纸片数张.
教学过程
Ⅰ.巧设情景问题,引入课题
[师]同学们好,老师问大家一个问题:你家铺有地板砖吗?
[生齐]铺有地板砖.
[师]那你家铺的地板砖是什么图形呢?
[生甲]正方形.
[生乙]正六边形.
[师]很好,我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(出示投影,展示各种地板图片)
[师]这些地板漂亮吗?
[生齐]非常漂亮.
[师]很好,这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.
这节课我们来探索平面图形的密铺.
Ⅱ.讲授新课
[师]平面图形的密铺,又称做平面图形的镶嵌,在平面上密铺需注意:各种图形拼接后要既无缝隙,又不重叠.
大家愿意美化生活环境吗?
[生齐]愿意.
[师]好,那我们先来探索多边形密铺的条件,大家拿出准备好的剪刀和硬纸片分组来做一做(出示投影片§4.8A)
(1)用形状、大小完全相同的三角形能否密铺?
(2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.
(3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?
(4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?
(学生动手制作、教师强调:)
[师]大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.
(学生分组拼接、讨论,寻找规律,教师巡视指导)
[生甲]用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.
从用三角形密铺的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等),它们可以组成两个三角形的内角,它们的和为360°.
[生乙]用同一种四边形也可以密铺,在用四边形密铺的图案中,观察到:每个拼接点处的四个角恰好是一个四边形的四个内角.四边形的内角和为360°,所以它们的和为360°.
[生丙]从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.
[师]同学们总结得非常好,通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议(出示投影片§4.8B)
(1)正六边形能否密铺?简述你的理由.
(2)分析如下图,讨论正五边形不能密铺.
(3)还能找到能密铺的其他正多边形吗?
(学生分析、讨论、归纳)
[生甲]正六边形能密铺.因为正六边形的每个内角都是:=120°,在每个拼接点处,恰好能容纳下3个内角,而且相互不重叠,没有空隙.
[生乙]正五边形的每个内角都是108°,360不是108的整数倍.如图所示,在每个拼接点处,三个内角之和为324°,小于360°,而四个内角之和都大于360°.
[师]很好,乙同学说的也就是:在每个拼结处,拼三个内角不能保证没空隙,而拼四个角时,必定有重叠现象.
[生丙]老师,我知道了,要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺.
[师]很好,事实上,对于正n边形,它的每一个内角都为,在每个拼接点处,设可以将m个内角彼此无重叠、无缝隙地拼接在一起,由于这些角的和应为360°,因此有×m=360°
此式可化为:(m-2)(n-2)=4
m、n都是正整数.
因此:m-2,n-2都是4的因子.
所以,m、n的取值仅有三种可能,即:
这正是正多边形的三种可以密铺的情况.当然,一般三角形、四边形也可以密铺.虽然它们的内角未必都相等.
(出示投影片§4.8C)
[师]这是用一种正多边形镶嵌平面的三种情况,图案漂亮吗?
[生齐]漂亮.
[师]好,下来我们可以利用多边形设计一些美丽的图案.
m(m>2)n平面镶嵌图案
3
4
5
6
7
[生]老师,我们讨论了用正多边形镶嵌平面,那非正多边形能否镶嵌一个平面呢?
[师]这个问题我们以后要涉及到,因为用非正多边形镶嵌平面比较复杂,所以这节课我们不进行讨论.
Ⅲ.课堂练习
(一)课本P114随堂练习?
1.如图,在一个正方形的内部按图示(1)的方式剪去一个正三角形,并平移,形成如图(2)所示的新图案,以这个图案为“基本单位”能否进行密铺?说说你的理由.
答案:可以进行密铺.因为正方形是可以密铺的.这个题只是在整个密铺图案中,将其中一个正方形的某一部分平移到了另一正方形的相应部位,因而它也是可以密铺的.
2.利用习题3.7第三题所得的“鱼”形图案能否密铺?根据上面的思路,自己独立设计一个可以密铺的“基本单位”图形.
答案:可以密铺.
(二)读一读
课本P114漂亮的密铺图案.
(三)试一试
同时用边长相同的正八边形和正方形能否密铺?用硬纸板为材料进行实验.
答案:可以密铺
(学生进行操作,来实验,从而得证)
(四)看课本P113后总结
Ⅳ.课时小结
本节课我们通过活动,探讨,知道任意一个三角形,四边形或正六边形可以镶嵌成一个平面,并且探索出正多边形密铺的条件.即:
一种正多边形的一个内角的倍数是否是360°.
Ⅴ.课后作业
(一)课本P115习题4.131、2、3
(二)1.预习内容:“第三章四边形性质探索”的全部内容
2.预习提纲:
(1)梳理本章内容.
(2)建立本章的知识框架.
Ⅵ.活动与探究
探索用两种正多边形镶嵌平面的条件.
过程:让学生先从简单的两种正多边形开始探索.
(1)正三角形与正方形
正方形的每个内角是90°,正三角形的每个内角是60°,对于某个拼结点处,设有x个60°角,有y个90°角,则:
60x+90y=360
即:2x+3y=12
又x、y是正整数
解得:x=3,y=2
即:每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图)
(2)正三角形与正六边形
正三角形的每个内角是60°,正六边形的每个内角是120°,对于某个拼结点处,设有x个60°角,有y个120°角,即:
60x+120y=360°
即x+2y=6
x、y是正整数
解得:
即:每个顶点处用四个正三角形和一个正六边形,或者用二个正三角形和两个正六边形,如下图.
(3)正三角形和正十二边形
与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形
由以上讨论可找到镶嵌平面的条件.
结论:
由n种正多边形组合起来镶嵌成一个平面的条件:
(1)n个正多边形中的一个内角的和的倍数是360°;
(2)n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.
板书设计
§4.8平面图形的密铺
一、平面图形的密铺
四、课堂练习
二、平面图形的密铺的条件
五、课时小结
三、议一议
六、课后作业
文章来源:http://m.jab88.com/j/76547.html
更多