88教案网

九年级数学竞赛开放性问题评说辅导教案

做好教案课件是老师上好课的前提,是时候写教案课件了。我们制定教案课件工作计划,才能更好地安排接下来的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“九年级数学竞赛开放性问题评说辅导教案”,欢迎您参考,希望对您有所助益!

【例题求解】
【例1】如图,⊙O与⊙O1外切于点T,PT为其内公切线,AB为其外公切线,且A、B为切点,AB与PT相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(杭州市中考题)
思路点拨为了能写出更多的正确结论,我们可以从以下几分角度作探索,线段关系,角的关系、三角形的关系及由此推出的相应结论.

注:明确要求将数学开放性题作为中考试题,还是近一二年的事情.开放性问题没有明确的目标和解题方向,留有极大的探索空间.
解开放性问题,不具有定向的解题思路,解题时总要有合情合理、实事求是的分析,要把归纳与演绎协调配合起来,把直觉发现与逻辑推理相互结合起来,把一般能力和数学能力同时发挥出来.杭州市对本例评分标准是以正确结论的难易程度为标准灵活打分,分值直接反映考生的能力及创新性.
【例2】如图,四边形ABCD是⊙O的内接四边形,A是BD的中点,过A点的切线与CB的延长线交于点E.
(1)求证:ABDA=COBE;
(2)若点E在CB延长线上运动,点A在BD上运动,使切线EA变为割线EFA,其他条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)
(北京市海淀区中考题)
思路点拨对于(2),能画出图形尽可能画出图形,要使结论ABDA=CDBE成立,即要证△ABE∽△CDA,已有条件∠ABE=∠CDA,还需增加等角条件,这可由多种途径得到.

注:许多开放性问题解题思路也是开放的(多角度、多维度思考),探索的条件或结论并不惟一.故解开放性问题,应尽可能深入探究,发散思维,提高思维的品质,切忌入宝山而空返.Jab88.cOM

【例3】(1)如图1,若⊙O1与⊙O2外切于A,BC是⊙O1与⊙O2外公切线,B、C为切点,求证:AB⊥AC.
(2)如图2,若⊙O1与⊙O2外离,BC是⊙O1与⊙O2的外公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,BM、CN的延长线交于P,则BP与CP是否垂直?证明你的结论.
(3)如图3,若⊙O1与⊙O2相交,BC是⊙O1与⊙O2的公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,Q是线段MN上一点,连结BQ、CQ,则BQ与CQ是否垂直?证明你的结论.
思路点拨本例是在基本条件不变的情况下,通过运动改变两圆的位置而设计的,在运动变化中,结论可能改变或不变,关键是把(1)的证法类比运用到(2)、(3)问题中.

注:开放性问题还有以下呈现方式:
(1)先提出特殊情况进行研究,再要求归纳猜测和确定一般结论;
(2)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论应发生的变化,或改变结论时其条件相应发生的变化.
【例4】已知直线(0)与轴、轴分别交于A、C两点,开口向上的抛物线过A、C两点,且与轴交于另一点B.
(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于,求这条直线和抛物线的解析式;
(2)是否存在这样的抛物线,使得tan∠ACB=2,且△ABC外接圆截得轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.
(无锡市中考题)

思路点拨(1)通过“点B到直线AC的距离等于”,利用等积变换求出A、B两点的距离;(2)先假设存在这样的抛物线,再由条件推理计算求得,最后加以验证即可.

注:解存在性开放问题的基本方法是假设求解法,即假设存在→演绎推理→得出结论(合理或矛盾).
【例5】如图,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”.在研究“正度”时,应保证相似三角形的“正度”相等.

设等腰三角形的底和腰分别为、,底角和顶角分别为、.要求“正度”的值是非负数.
同学甲认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形;
同学乙认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形.
探究:(1)他们的方案哪个较为合理,为什么?
(2)对你认为不够合理的方案,请加以改进(给出式子即可);
(3)请再给出一种衡量“正度”的表达式.(安徽省中考题)
思路点拨通过阅读,正确理解“正度”这个新概念,同时也要抓住“在研究‘正度’时,应保证相似三角形的‘正度’相等”这句话的实质,可先采取举实例加深对“正度”的理解,再判断方案的合理性并改进方法.

注:(1)解结论开放题往往要充分利用条件进行大胆而合理的猜想,通过观察、比较、联想、猜测、推理和截判断等探索活动,发现规律,得出结论.
(2)阅读是学习的重要途径,在这种阅读型研究性问题中,涌现了许多介绍新的知识和新的研究方法的问题,能极大地开阔我们的视野.
(3)研究性学习是课程改革的一个亮点,研究性学习是美国芝加哥大学教授施瓦布在《作为探究的科学教学》的演讲时提出的.他主张引导学生直接用科学研究的方式进行教学,即设定情境、提出问题、分析问题、设计实验、验证假设、分析结果、得出结论.研究性问题是近年中考中出现的一种新题型,它要求我们适应新情况,通过实践,增强探究和创新意识,学习科学研究方法.

学力训练
1.如图,是四边形ABCD的对称轴,如果AD∥BC,有下列结论:
①AB∥CD,②AB=BC;③AB⊥BC;④AO=OC.
其中正确的是.
(把你认为正确的结论的序号都填上)(安徽省中考题)
2.如图,是一个边长为的小正方形与两个长、宽分别为、的小矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式:①;②;③.
(泉州市中考题)
3.有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线;
乙:与轴两个交点的横坐标都是整数;
丙:与轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式:.
(北京市东城区中考题)
4.如图,已知AB为⊙O的直径,直线与⊙O相切于点D,AC⊥于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.
(威海市中考题)
5.在一个服装厂里有大量形状为等腰直角三角形的边角布料(如图).现找出其中的一种,测得∠C=90°,AC=BC=4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).
(黄冈市中考题)
6.如图,抛物线与x轴交于点A(x1,0),B(x2,0)(x10x2),与y轴交于点C(0,-2),若OB=4OA,且以AB为直径的圆过C点.
(1)求此抛物线的解析式;
(2)若点D在此抛物线上,且AD∥CB.
①求D点的坐标;
②在x轴下方的抛物线上,是否存在点P使得△APD的面积与四边形ACBD的面积相等?若存在,求出点P坐标;若不存在,请说明理由.
(连云港市中考题)
7.给定四个命题:①sinl5°与sin75°的平方和为1;②函数的最小值为-10;③;④,则x=10”,其中错误的命题的个数是.
(“我爱数学”初中生夏令营试题)
8.①在实数范围内,一元二次方程的根为;②在△ABC中,若AC2+BC2AB2,则△ABC是锐角三角形;③在△ABC和△AB1C1中,、、分别为△ABC的三边,、、分别为△AB1C1的三边,若,,,则△ABC的面积大S于△AB1C1的面积S1.以上三个命题中,真命题的个数是()
(全国初中数学联赛试题)
A.0B.1C.2D.3
9.已知:AB是⊙O的直径,AP、AQ是⊙O的两条弦,如图1,经过B做⊙O的切线,分别交直线AP、AQ于点M、N.可以得出结论APAM=AQAN成立.
(1)若将直线向上平行移动,使直线与⊙O相交,如图2所示,其他条件不变,上述结论是否成立?若成立,写出证明,若不成立,说明理由;
(2)若将直线继续向上平行移动,使直线与⊙O相离,其他条件不变,请在图3上画出符合条件的图形,上述结论成立吗?若成立,写出证明;若不成立,说明理由.
10.如图,已知圆心A(0,3),A与轴相切,⊙B的圆心在轴的正半轴上,且⊙B与⊙A外切于点P,两圆的公切线MP交轴于点M,交轴于点N.
(1)若sin∠OAB=,求直线MP的解析式及经过M、N、B三点的抛物线的解析式;
(2)若A的位置大小不变,⊙B的圆心在轴的正半轴上移动,并使⊙B与⊙A始终外切,过M作⊙B的切线MC,切点为C在此变化过程中探究:
①四边形OMCB是什么四边形,对你的结论加以证明;
②经过M、N、B点的抛物线内是否存在以BN为腰的等腰三角形?若存在,表示出来;若不存在,说明理由.(山西省中考题)
11.有一张矩形纸片ABCD,E、F、分别是BC、AD上的点(但不与顶点重合),若EF将矩形ABCD分成面积相等的两部分,设AB=,AD=,BE=.
(1)求证:AF=EC;
(2)用剪刀将该纸片沿直线EF剪开后,再将梯形纸片ABEF沿AB对称翻折,平移拼接在梯形ECDF的下方,使一底边重合,一腰落在DC的延长线上,拼接后,下方梯形记作EEBC.
①当为何值时,直线EE经过原矩形的一个顶点?
②在直线EE经过原矩形的一个顶点的情形下,连结BE,直线BE与EF是否平行?你若认为平行,请给予证明;你若认为不平行,试探究当与有何种数量关系时,它们就垂直?
(江西省中考题)
12.(1)证明:若取任意整数时,二次函数总取整数值,那么,、、都是整数.
(2)写出上述命题的逆命题,且证明你的结论.(全国初中数学竞赛题)
13.已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.
(1)这样的四边形有几个?
(2)求这样的四边形边长的平方和的最小值.(全国初中数学联赛题)

参考答案

相关推荐

九年级数学竞赛动态几何问题透视辅导教案


老师职责的一部分是要弄自己的教案课件,是认真规划好自己教案课件的时候了。对教案课件的工作进行一个详细的计划,接下来的工作才会更顺利!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“九年级数学竞赛动态几何问题透视辅导教案”,希望能对您有所帮助,请收藏。

【例题求解】
【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在上转动两次,使它转到A″B″C″的位置,设BC=1,AC=,则顶点A运动到点A″的位置时,点A经过的路线与直线所围成的面积是.
(黄冈市中考题)
思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和,但该路线与直线所围成的面积不只是两个扇形面积之和.
【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置()
A.在平分AB的某直线上移动B.在垂直AB的某直线上移动
C.在AmB上移动D.保持固定不移动
(荆州市中考题)
思路点拨画图、操作、实验,从中发现规律.

【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为厘米,请你回答下列问题:
(1)当=3时,的值是多少?
(2)就下列各种情形:
①0≤≤2;②2≤≤4;③4≤≤6;④6≤≤8.求与之间的函数关系式.
(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下与的关系.
(吉林省中考题)
思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.

注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.
建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.
【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m/秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2(秒).
(1)当为何值时,线段EF与BC平行?
(2)设12,当为何值时,EF与半圆相切?
(3)当1≤2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.
(江西省中考题)
思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于的方程;对于(3),点P的位置是否发生变化,只需看是否为一定值.

注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.

【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=.
(1)求:CD的长(用含R、的式子表示);
(2)试判断CD与PO1的位置关系,并说明理由;
(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于?C′D′与P′Ol的位置关系如何?并说明理由.
(济南市中考题)
思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OOl上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.
学力训练
1.如图,ΔABC中,∠C=90°,AB=12cm,∠ABC=60°,将ΔABC以点B为中心顺时针旋转,使点C旋转到AB延长线上的D处,则AC边扫过的图形的面积是cm(π=3.14159…,最后结果保留三个有效数字).(济南市中考题)
2.如图,在RtΔABC中,∠C=90°,∠A=60°,AC=cm,将ΔABC绕点B旋转至ΔABC的位置,且使A、B、C三点在同一条直线上,则点A经过的最短路线的长度是cm.
(黄冈市中考题)
3.一块等边三角形的木板,边长为l,现将木板沿水平线翻滚,那么B点从开始至结束走过的路径长度为()
A.B.C.4D.
(烟台市中考题)
4.把ΔABC沿AB边平移到ΔABC的位置,它们的重叠部分的面积是ΔABC的面积的一半,若AB=,则此三角形移动的距离AA是()
A.B.C.1D.
(荆门市中考题)
5.如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB—BC—CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时AO的长;
(2)在O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r的取值范围及相应的切点个数;
(3)设O在整个移动过程中,在ΔABC内部,⊙O未经过的部分的面积为S,在S0时,求关于r的函数解析式,并写出自变量r的取值范围.
(江西省中考题)

6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB的长为,CD的长为.
(1)求关于的函数关系式;当以BC为直径的圆与AC相切时,求的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.
(太原市中考题)
7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN的两边分别交射线OP于M、N两点,且∠MAN=∠POQ=(为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=,ON=(≥0),ΔAOM的面积为S,若cos、OA是方程的两个根.
(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;
(2)求证:AN2=ONMN;
(3)求与之间的函数关系式及自变量的取值范围;
(4)试写出S随变化的函数关系式,并确定S的取值范围.
(河北省中考题)
8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.
(1)求BC、AD的长度;
(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间之间的函数关系式,并写出自变量的取值范围(不包含点P在B、C两点的情况);
(3)在(2)的前提下,是否存在某一时刻,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出的值;若不存在,请说明理由.
(青岛市中考)

9.已知:如图①,E、F、G、H按照AE=CG,BF=DH,BF=nAE(n是正整数)的关系,分别在两邻边长、的矩形ABCD各边上运动.
设AE=,四边形EFGH的面积为S.
(1)当n=l、2时,如图②、③,观察运动情况,写出四边形EFGH各顶点运动到何位置,使?
(2)当n=3时,如图④,求S与之间的函数关系式(写出自变量的取值范围),探索S随增大而变化的规律;猜想四边形EFGH各顶点运动到何位置,使;
(3)当n=k(k≥1)时,你所得到的规律和猜想是否成立?请说明理由.
(福建省三明市中考题)
10.如图1,在直角坐标系中,点E从O点出发,以1个单位/秒的速度沿轴正方向运动,点F从O点出发,以2个单位/秒的速度沿轴正方向运动,B(4,2),以BE为直径作⊙O1.
(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;
(2)在(1)的条件下,连结FB,几秒时FB与⊙O1相切?
(3)如图2,若E点提前2秒出发,点F再出发,当点F出发后,E点在A点左侧时,设BA⊥轴于A点,连结AF交⊙O1于点P,试问PAFA的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.
(武汉市中考题)

参考答案

九年级数学竞赛圆与圆辅导教案


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“九年级数学竞赛圆与圆辅导教案”,供您参考,希望能够帮助到大家。

【例题求解】

【例1】如图,⊙Ol与半径为4的⊙O2内切于点A,⊙Ol经过圆心O2,作⊙O2的直径BC交⊙Ol于点D,EF为过点A的公切线,若O2D=,那么∠BAF=度.

(重庆市中考题)

思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出∠DO2A的度数.

注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.

(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.

【例2】如图,⊙Ol与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙Ol与⊙O2的半径之比为()

A.2:5B.1:2C.1:3D.2:3

(全国初中数学联赛试题)

思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠COlO2(或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.

【例3】如图,已知⊙Ol与⊙O2相交于A、B两点,P是⊙Ol上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙Ol于点N.

(1)过点A作AE∥CN交⊙Oll于点E,求证:PA=PE;

(2)连结PN,若PB=4,BC=2,求PN的长.

(重庆市中考题)

思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系.

【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2.

(1)求大圆半径长;

(2)求线段BF的长;

(3)求证:EC与过B、F、C三点的圆相切.

(宜宾市中考题)

思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.

注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.

【例5】如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为.

(1)试建立以为自变量的函数的解析式;

(2)求函数的最小值.

(太原市竞赛题)

思路点拨设两圆半径分别为R、r,对于(1),,通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围.

注:如图,半径分别为r、R的⊙Ol、⊙O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则:

(1)AB=2;

(2)∠ACB=∠OlMO2=90°;

(3)PC2=PAPB;

(4)sinP=;

(5)设C到AB的距离为d,则.

学力训练

1.已知:⊙Ol和⊙O2交于A、B两点,且⊙Ol经过点O2,若∠AOlB=90°,则∠AO2B的度数是.

2.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围.

(2003年上海市中考题)

3.如图;⊙Ol、⊙O2相交于点A、B,现给出4个命题:

(1)若AC是⊙O2的切线且交⊙Ol于点C,AD是⊙Ol的切线且交⊙O2于点D,则AB2=BCBD;

(2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm;

(3)若CA是⊙Ol的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上,

(4)若过点A作⊙Ol的切线交⊙O2于点D,直线DB交⊙Ol于点C,直线CA交⊙O2于点E,连结DE,则DE2=DBDC,则正确命题的序号是(写出所有正确命题的序号).

(厦门市中考题)

4.如图,半圆O的直径AB=4,与半圆O内切的动圆Ol与AB切于点M,设⊙Ol的半径为,AM的长为,则与的函数关系是,自变量的取值范围是.

(昆明市中考题)

5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是()

A.2B.C.D.

6.如图,已知⊙Ol、⊙O2相交于A、B两点,且点Ol在⊙O2上,过A作⊙Oll的切线AC交BOl的延长线于点P,交⊙O2于点C,BP交⊙Ol于点D,若PD=1,PA=,则AC的长为()

A.B.C.D.

(武汉市中考题)

7.如图,⊙Ol和⊙O2外切于A,PA是内公切线,BC是外公切线,B、C是切点①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PBPC=OlAO2A.

上述结论,正确结论的个数是()

A.1B.2C.3D.4

(郴州市中考题)

8.两圆的半径分别是和r(Rr),圆心距为d,若关于的方程有两个相等的实数根,则两圆的位置关系是()

A.一定内切B.一定外切C.相交D.内切或外切

(连云港市中考题)

9.如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.

(1)求证:PC平分∠APD;

(2)求证:PDPA=PC2+ACDC;

(3)若PE=3,PA=6,求PC的长.

10.如图,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切线,切点为B、C,连结BA并延长交⊙Ol于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙Ol的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.

(四川省中考题)

11.如图,已知A是⊙Ol、⊙O2的一个交点,点M是OlO2的中点,过点A的直线BC垂直于MA,分别交⊙Ol、⊙O2于B、C.

(1)求证:AB=AC;

(2)若OlA切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:dl+d2=O1O2;

(3)在(2)的条件下,若dld2=1,设⊙Ol、⊙O2的半径分别为R、r,求证:R2+r2=R2r2.

(山西省中考题)

12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.

(全国初中数学联赛试题)

13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.

(全国初中数学联赛试题)

14.如图,⊙Ol和⊙O2内切于点P,⊙O2的弦AB经过⊙Ol的圆心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,则⊙Ol与⊙O2的直径之比为()

A.2:7B.2:5C.2:3D.1:3

15.如图,⊙Ol与⊙O2相交,P是⊙Ol上的一点,过P点作两圆的切线,则切线的条数可能是()

A.1,2B.1,3C.1,2,3D.1,2,3,4

(安徽省中考题)

16.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立()

A.有内切圆无外接圆B有外接圆无内切圆

C.既有内切圆,也有外接圆D.以上情况都不对

(太原市竞赛题)

17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙PP于点D,E,过点E作EF⊥CE交CB的延长线于F.

(1)求证:BC是⊙P的切线;

(2)若CD=2,CB=,求EF的长;

(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.

(青岛市中考题)

18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.

(1)若PC=PD,求PB的长;

(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;

(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.

请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.(浙江省嘉兴市中考题)

19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.

(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;

(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.

(全国初中数学联赛试题)

20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.

操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图).

方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,

探究:(1)求方案一中圆锥底面的半径;

(2)求方案二中圆锥底面及圆柱底面的半径;

(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.

(大连市中考题)

九年级数学竞赛图表信息问题教案


作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《九年级数学竞赛图表信息问题教案》,供大家参考,希望能帮助到有需要的朋友。

【例题求解】
【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:
(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车
早小时到达6地;
(2)快车追上慢车需小时,慢车、快车的速度分别为千米/时;
(3)A、B两地间的路程是.
思路点拨对于(2),设快车追上慢车需小时,利用快车、慢车所走的路程相等,建立的方程.

注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取.
【例2】已知二次函数的图象如图,并设M=,则()
A.M0B.M=0C.M0D.不能确定M为正、为负或为0
思路点拨由抛物线的位置判定、、的符号,并由,推出相应y值的正负性.

注:函数图象选择题是广泛见于各地中考试卷中的一种常见问题,解此类问题的基本思路是:由图象大致位置确定解析式中系数符号特征,进而再判定其他图象的大致位置,在解题中常常要运用直接判断、排除筛选、分类讨论、参数吻合等方法.
【例3】某人租用一辆汽车由A城前往B城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米所需要的平均费用为1.2元.试指出此人从A城出发到B城的最短路线.
日平均风速v/(米/秒)v33≤v6v≥6
日发电量A型发电机0≥36≥150
(千瓦时)B型发电机0≥24≥90

(2003年全国初中数学竞赛题)
思路点拨从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城,(2)从A城出发到达B城,不经过O城.

【例4】我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米/秒的时间共约160天,其中日平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:
根据上面的数据回答:
(1)若这个发电厂购台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为千瓦时;
(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000千瓦时,请你提供符合条件的购机方案.

思路点拨对于(1),注意“平均风速不小于3米/秒”的时间区分;对于(2),利用购置费用和发电总量分别列出不等式.

【例5】一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价与上市时间的关系可用图1的一条线段表示;它的种植成本与上市时间的关系可用图2抛物线的一部分来表示,假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?
思路点拨由图象提供的信息,求出直线、抛物线的解析式,利用市场售价与成本价相等建立时间的方程.

注:本例综合运用一次函数和二次函数的有关知识,涉及信息量大,题中呈现信息的方式不仅是文字和符号,还包括表格.
解图象信息问题的关键是化“图象信息”为“数学信息”,具体包括:
(1)读图找点;
(2)看图确定系数符号特征;
(3)见形(图象形态)想式(解析式),建模求解.

学历训练
1.如图,是某出租车单程收费(元)与行驶路程(千米)之间的
函数关系的图象,请根据图象回答以下问题:
(1)当行驶8千米时,收费应为;
(2)从图象上你能获得哪些正确的信息(请写出2条)
①;②.
(3)收费(元)与行驶(千米)(≥3)之间的函数关系式为.
2.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B地旅行,如图表示甲、乙两人离开A城的路程与时间之间的函数图象。根据图象,你能得到关于甲、乙两人旅行的哪些信息?
答题要求:
(1)请至少提供四条信息,如,由图象可知:甲比乙早出发4小时;甲离开A城的路程与时间的函数图象是一条折线段,说明甲作变速运动.
(2)不要再提供“(1)”中已列举的信息.
①;②;
③;④

3.如图,已知函数的图象过(一1,0)和(0,一1)两点,则的取值范围是.
4.下列各图中,能表示函数和()在同一平面直角坐标系中的图象大致是().
5.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位(米)随时间(天)变化的是()
6.在同一坐标系中,函数与的图象大致是()
7.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收人,那么每周应限定参观人数是多少?门票价格应是多少元?

8.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车进行测试,测得数据如下表:
刹车时车速(千米/时)1102030405060
刹车距离(米)00.31.02.13.65.57.8
(1)以车速为轴,以刹车距离为轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;
(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数的解析式;
(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?
9.二次函数的图象如图所示,则化简二次根式的结果是.

10.小刚、爸爸、爷爷同时从家中出发到达同一目的地后都立即返回.小刚去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都步行.三个人步行的速度不等,小刚与爷爷骑车的速度相等.每个人的行走路程与时间的关系分别是下面三个图象中的一个.走完一个往返,小刚用分钟,爸爸用分钟,爷爷用分钟.
11.小明同学骑自行车在上学的路上要经过两座山梁,行走的路线如图所示.已知上山的速度为米/分钟,平路的速度为米/分钟,下山的速度为米/分钟,其中.那么,小明同学上学骑自行车行走的路程S(米)与所用的时间(分钟)的函数关系,可能是下面图象中的()

12.二次函数的图象如图所示,则在下列不等式中,①abc0;②a+b+c0;③a+cb;④成立的个数是()
A.1个B.2个C.3个D.4个
13.如图,直角三角形AOB中,AB⊥OB,且AB=OB=3.设直线l:x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系的图像为()
14.设6o,将一次函数与的图象画在平面直角坐标系中,则有一组、的取值,使得下列4个图中的一个为正确的是()
15.某商场为提高彩电销售人员的积极性,制定了新的工资分配方案,方案规定:每位销售人员的工资总额=基本工资+奖励工资,每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.
(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲在本月的销售额为多少元?
(2)依法纳税是每个公民应尽的义务,根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表.若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,请问销售员乙本月销售A型彩电多少台?
表1表2

16.有麦田5块A、B、C、D、E,它们的产量(单位:吨)、交通状况和每相邻两块麦田的距离如图所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场,问建在哪块麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?(图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且bad).

17.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定满分为40分,以下依次为30分、20分、10分和0分共五个评分等级,每个小组分别回答这五个方面的问题.现将A、B、C、D、E五个小组的部分得分列表如下:
语文数学外语常识奥运总分名次
A组1801
B组2
C组3
D组304
E组40205
表中:(1)每一竖行的得分均不相同(包括单科和总分);
(2)C组有4个单科得分相同.
求:B、C、D、E组的总分并填表进行检验.

参考答案

文章来源:http://m.jab88.com/j/71846.html

更多

最新更新

更多