88教案网

中考数学不等式(组)的应用复习

每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《中考数学不等式(组)的应用复习》,仅供参考,大家一起来看看吧。

章节第二章课题
课型复习课教法讲练结合
教学目标(知识、能力、教育)1.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感.
2.能根据具体问题中的数量关系,列出一元一次不等式(组)解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理.
3.初步体会不等式、方程、函数之间的内在联系与区别
教学重点列出一元一次不等式(组)解决简单的实际问题。
教学难点体会不等式、方程、函数之间的内在联系与区别。
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.列不等式解应用题的特征:列不等式解应用题,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理解这些词的含义.
2.列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:①;②;③;④;⑤。(其中检验是正确求解的必要环节)
(二):【课前练习】
1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给会4个答案,其中只有一个答案正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应选对()道题.
A.18B.19C.20D.21
2.某班在布置新年联欢晚会会场时,需要将直角三角形
彩纸裁成长度不等的短形彩条如右图,在Rt△ABC中,
∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形彩条a1,a2,a3……若使裁得的矩形彩条的长都不小于5cm,则将每张直角三角形彩纸裁成的矩形纸条的总数是()
A.24;B.25;C.26;D.27
3.一个两位数,其个位数字比十位数字大2,已知这个两位数大于20而小于40,求这个两位数.
4.若干学生分住宿舍,每间4人余20人;每间住8人有一间不空也不满,则宿舍有多少间?学生多少人?
5.某通讯公司规定在营业网内通话收费为:通话前3分钟0.5元,通话超过3分钟每分钟加收0.1元(不足1分钟按1分钟计算)某人一次通话费为1.1元,问此人此次通话时间大约为多少?
二:【经典考题剖析】
1.光明中学9年级甲、乙两班在为“希望工程”捐款活动中,两班捐款的总数相同,均多于300元且少于400元.已知甲班有一人捐6元,其余每人都捐9元;乙班有一人捐13元,其余每人都捐8元.求甲、乙两班学生总人数共是多少人?
解:设甲班人数为x人,乙班人数为y人,由题意,
可得
因为x为整数,所以x=34,35,36,37,38,39,40,41,42,43,44.又因为y也是整数,所以x是8的倍数.所以x=40.则y=44.所以总人数是84.
答:甲、乙两班学生总人数共是84人。点拨:此题中取整数是难点和关键,应根据实际,人数都为整数来确定甲、乙两班的人数.
2.若方程一个根大于-1,另一个根小于-1,求的取值范围
解析:此题有常规解法,即利用根与系数的关系和根的判别式求解。但若能注意知识间内在联系,把一元二次方程与二次函数结合起来,利用二次函数的图象解此题可谓绝妙。
3.由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至
24:00为用电高峰期.电价为a元/度;每天0:00至7:00为用电平稳期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:
⑴若4月份在平稳期的用电量占当月用电量的,
5月份在平稳期的用电量占当月用电量的,求a、b在的值;
⑵若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应
在什么范围?
4.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂
有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B
型车厢每节费用为8000元。
(1)设运送这批货物的总费用为万元,这列货车挂A型车厢节,试写出与之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪种方案运费最省,最少运费为多少元?
略解:(1)设用A型车厢节,则用B型车厢节,总运费为万元,则:
(2)依题意得:
解得:24≤≤26;∴=24或25或26;∴共有三种方案安排车厢。
(3)由知,越大,越小,故当=26时,运费最省,这时,
=26.8(万元)
5.在车站开始检票时,有(>0)名旅客在候车室排队等候检票进站。检票开始后,仍有旅客继续前来排队检票进站。设旅客按固定的速度增加,检票口检票的速度也是固定的。若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?
分析:该题联系生活实际,设计巧妙,要求学生有较强的阅读理解能力,综合应用不等式、方程、函数等方面的知识建立数学模型;对学生如何运用所学数学知识解决实际问题(即将实际问题转化为数学问题)的能力提出了较高的要求。本题解题方法多,给学生发挥才能的空间大,是一道考查学生分析问题和解决问题能力的好题。
解法1:设检票开始后每分钟新增加的旅客为人,检票的速度为每个检票口每分钟人,5分钟内检票完毕要同时开放个检票口,依题意得:,由(1)、(2)消去得(4),代入(1)得(5),将(4)和(5)代入(3)得,而>0,所以,又为整数,因此=4,故至少需同时开放4个检票口。
解法2:利用检票时间相等建立等量关系,即不管开放几个检票口,每位旅客的检票时间相等,得(字母含义与解法1相同),以下解法略。
解法3:设开始检票后每分钟新增加旅客为人,检票的速度为每分钟人,开放检票口的个数为个,检票时间为分钟,依题意,与之间的函数关系为,而=30,=1;=10,=2,因此可求出函数关系为,即,当≤5时,≥3.5,故至少需同时开放4个检票口.本题还有其它解法略。
三:【课后训练】
1.已知导火线的燃烧速度是0.7厘米/秒,爆破员点燃后跑开的速度为每秒5米,为了点火后跑到130米外的安全地带,问导火线至少应有多长?(精确到I厘米)
2.甲、乙两车间同生产一种零件,甲车间有1人每天生产6件,其余每人每天生产11件,乙车间有1人每天生产7件,其余的生产10件,已知各车间生产的零件数相等,且不少于100件又不超过200件,求甲、乙车间各多少人?
3.商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售时一折后的售价为原价的,问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算).
4.现有住宿生若干人,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,求住宿生人数和宿舍间数.
6.某钢铁企业为了适应市场需要,决定将一部分一线员工调整到服务岗位.该企业现有一线员11000人.平均每人全年可创造钢铁产品产值30万元.根据规划,调整后,剩下的一线员工平均每人全年创造钢铁产品产值可增加30%,调整到服务岗位人员平均每人全年可创造产值24万元.要求调整后企业全年的总产值至少增加20%,并且钢铁产品的产值不能超过33150万元.怎样安排调整到服务岗位的人数?
8.某生产“科学计算器”的公司有100名职工,该公司生产的计算器由百货公司代理销售,经公司多方考察,发现公司的生产能力受到限制.决定引人一条新的计算器生产线生产计算器,并从这100名职工中选派一部分人到新生产线工作.分工后,继续在原生产线从事计算器生产的职工人均年产值可增加20%,而分派到新生产线的职工人均年产值为分工前人均年产值的4倍,如果要保证公司分工后,原生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值。而新生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值的一半,试确定分派到新生产
线的人数.
9.某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.5千克,试制甲、乙两种新型饮料共50千克,下表示试验的相关数据:
(1)假设甲种饮料配制x千克,请你写出满足提议的不等式组,并求出其解;
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
10.某校计划明年暑假组织初三教师到新、马、泰(新加坡、马来西亚、泰国)旅游,校长从网上了解到甲、乙两旅行社的服务质量相同,且组织到新、马、泰的标价都是每人3580元,暑期对于教师可给予优惠:甲旅行社可给予每位教师(包括一名带队校长)七五折优惠;乙旅行社可免去一名带队校长的费用,其余教师八折优惠.
(1)若共有人(含一名带队校长)参加旅游活动,请你帮助校长作出选择:选两家旅行社中的哪一家,能使学校支付的旅游总费用最少.
(2)若初三教师共有18人(不包括校长),问应选哪家旅行社?这时应支付旅游总费用多少元?
四:【课后小结】
布置作业地纲

相关推荐

不等式及不等式组


不等式及不等式组
知识网络
一、不等式与不等式的性质
1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:
(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a>b,c为实数a+c>b+c
(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b,c>0ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0ac<bc.
二、不等式(组)的类型及解法
1、一元一次不等式:
(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。
对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.
(2)一元一次不等式的解集用数轴表示有以下四种情况,如下图所示:

(1)如图中所示:

(2)如图中所示:

(3)如图中所示:
(4)如图中所示:
用数轴表示不等式的解集,应记住下面的规律:
大于向右画,小于向左画,有等号(,)画实心点,无等号(,)画空心圈.
(3)解一元一次不等式的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤将项的系数化为1.
注意:解不等式时,上面的五个步骤不一定都能用到,并且不一定按照顺序解,要根据不等式的形式灵活安排求解步骤.
2、一元一次不等式组:
(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
几个一元一次不等式合在一起,就组成了一个一元一次不等式组.
几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.
(2)解法:先求出各不等式的解集,再确定解集的公共部分。
注:求不等式组的解集一般借助数轴求解较方便。
不等式组解集的确定方法:若ab,则有:
(1)的解集是xa,即“同小取小”.(2)的解集是xb,即“同大取大”.
(3)的解集是axb,.(4)的解集是无解,即“一大一小中间找”.

不等式与不等式组导学案


老师会对课本中的主要教学内容整理到教案课件中,大家静下心来写教案课件了。只有规划好了教案课件新的工作计划,才能在以后有序的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“不等式与不等式组导学案”,欢迎大家阅读,希望对大家有所帮助。

第六课时利用不等关系分析比赛
课型:新授
课时:1课时
主备人:初一数学组
学习目标:
1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;
2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;
3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;
4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会。
学习重点:利用不等关系分析预测比赛结果
学习难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性
学习过程
一.自主学习
1、什么叫一元一次不等式(组)?

2、怎样求解一元一次不等式(组)?列一元一次不等式(组)解应用题的步骤是什么?
二、合作探究:
某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?
(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?
(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?

三、巩固运用:
有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由。
(学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:
(1)如果小组中有一个队的战绩为全胜,A队能否出线?
(2)如果小组中有一个队的积分为10分,A队能否出线?
(3)如果小组中积分最高的队积9分,A队能否出线?)
四、反思总结:

五、达标检测
1、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分一个队打14场比赛负5场共得19分.那么这个队胜了几场?

2、某次篮球联赛中,火炬队与月亮队要争出线权.火炬队目前的战绩是17胜13负(其中有一场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.为确保出线,火炬队在后面的比赛中至少要胜多少场?
(在分析解决前述问题的过程中,自然会引发一些争论,提出一些问题假设,如:
(1)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜几场就一定能出线?
(2)如果月亮队在后面的比赛中3胜(包括胜火炬队1场)2负,那么火炬队在后面的比赛中至少要胜几场才能确保出线?
(3)如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中战绩如何几
(4)如果火炬队在后面的比赛中胜3场,那么什么情况下它一定出线?)
第七课时复习不等式与不等式组
课型:复习课
课时:2课时
主备人:初一数学组
一、知识点:
1、不等式和一元一次不等式的含义。
①如:-3﹥-5,b+1≤3,2x﹤y,-1﹤x≤3,x≠1等,含有的式子可称作不等式;②如:y-3﹥-5,b+1≤2b-3,2x+1﹤4等,是不等式并只含有未知数,同时未知数的次数是,则可称为一元一次不等式。
2、不等式的解、解集、解不等式的概念。
举例:判断下列哪些是不等式x+4﹥7的解?哪些不是不等式的解?
-4,-3.5,1,2.3,3,0,17,4,7,11。
分析:由3+3=6可知:(1)当x﹥3时,不等式x+4﹥7成立;(2)当x﹤3或x=3时,不等式x+3﹥6不成立。也就是说,任何一个大于3的数都是不等式x+4﹥7的解(如题目中的x=7就是不等式x+4﹥7其中的1个解)。这样的解有无数个,因此x﹥3表示了能使不等式成立的未知数“x”的取值范围,我们把它叫做不等式x+4﹥7的解的集合,简称解集。
而求不等式的解或解集的过程叫做。
3、不等式的三个性质:(思考:与等式基本性质对比有何异同?)
不等式性质1:
不等式性质2:
不等式性质3:
4、不等式解集的数轴表示。举例:(注意数轴看作由无数个点组成,每一个点都与一个数对应,注意空心点和实心点的用法。)

5、解一元一次不等式的一般步骤:(与解一元一次方程类似)
(1);(2);(3);(4);(5)(注意不等号开口的方向)。
6、由两个一元一次不等式组成的不等式组的解集的四种情形:
不等式组(其中:﹤)
在数轴上表示不等式组的解集口诀

同大取大

同小取小
﹤﹤
大小小大中间找
无解大大小小是无解
解题的关键:不等式组中的两个不等式的解集有无公共部分,且公共部分是什么。
7、列一元一次不等式(组)解应用题的步骤
(步骤与列一元一次方程解应用题类似,关键是设元和找出题目中各数量存在的不等关系。)
二、基础训练:
1.用恰当的不等号表示下列关系:
①x的3倍与8的和比y的2倍小:
②老师的年龄a不小于你的年龄b小:
2.已知ab用””或””连接下列各式;
(1)a-3----b-3,(2)2a-----2b,(3)-a3------b3(4)4a-3----4b-3(5)a-b---0
3.的与12的差不小于6,用不等式表示为__________________.
4.当_____时,代数式的值至少为1.
5.不等式6-12x0的解集是_________.
6.当x________时,代数式的值是非正数.
7.不等式组的解为.
8.若方程的解是正数,则的取值范围是_________
9.若点P(1-m,m)在第二象限,则(m-1)x1-m的解集为_______________.
10.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为米/分,则可列不等式组为__________________,小明步行的速度范围是_________.
三、典型例题:
【例1】下列不等式,那些总成立?那些总不成立?那些有时成立而有时不成立?
(1)-9.4﹤2,(2)3﹥0,(3)b+5﹤0,(4)︱x︱﹥0,(5)﹤0,(6)5+x﹥5-x。
分析:主要考虑未知数的取值,特别是正数、负数和零。

【例2】若﹤﹤0,则下列式子:①+1﹤+2,②﹥1,③+﹤,④﹤中,正确的有()。A、1个B、2个C、3个D、4个
分析由﹤﹤0得,、同为负数并且︱︱﹥︱︱。如取=-2,=-1代入式子中。
【例3】不等式2-7≤5的正整数解有()。A、7个B、6个C、5个D、4个
分析:先求出不等式的解:≤6,再从中找出符合条件的正整数。
【例4】如果的值是非正数,则的取值范围是()。
A、≤1B、≥1C、≤-1D、≥-1
分析:非正数也就是:0和负数,即≤0。
【例5】不等式组的解集是()。A﹥-B﹤-C≤1D-﹤≤1
分析:先求出每一个不等式的解集,再看两个解集的公共部分是什么。
解不等式①得:﹥-,解不等式②得:≤1;
解集在数轴表示如下:

∴原不等式组的解集为:-﹤≤1(大小小大中间找)。
【例6】不等式组无解,则的取值范围是()。
A、=2B、﹥2C、≤2D、≥2
分析:根据大大小小是无解,可得是较大的数,2是较小的数(但可以等于2)即:≥2。
【例7】不等式组的整数解是:__________________。
分析:先求出不等式组的解集-﹤≤1,再从中选出整数:0和1。
四、巩固运用:
1、下列式子:①-3﹤0,②4x+3y﹥0,③x=3,④,⑤x≠5,⑥x-3﹤y+2,其中是不等式的有()。A、5个B、4个C、3个D、2个
2、有理数、在数轴上位置如图所示,用不等式表示:
①+____0,②____0,③︱︱____︱︱。
3、若﹥,则下列式子一定成立的是()。
A、+3﹥+5B、-9﹥-9C、-10﹥-10D、﹥
4、下列结论:①若﹤,则﹤;②若﹥,则﹥;③若﹥且若=,
则﹥;④若﹤,则﹤。正确的有()。A、4个B、3个C、2个D、1个
5、若0﹤﹤1,则下列四个不等式中正确的是()。
A、﹤1﹤,B、﹤﹤1,C、﹤﹤1,D、1﹤﹤。
6、如果不等式(+1)﹥(+1)的解为﹤1,则必须满足________。
7、求下列不等式的解集,并把解集在数轴上表示出来。
(1)2-5﹥5-11(2)3-2(1-2)≥1

(3)4-7﹥3-1(4)2(-6)﹤3-

7、解不等式组
○1○2○3

8、关于的方程的解x满足2x10,求的取值范围

9、当关于、的二元一次方程组的解为正数,为负数,则求此时的取值范围?

10、不等式的解集为,求的值。

11、某商品的进价为500元,标价为750元,商家要求利润不低于5%的售价打折,至少可以打几折?

12、学校计划组织部分三好学生去某地参观旅游,参观旅游的人数估计为10--25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,两家旅行社表示可给予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余游客八折优惠。学校应怎样选择,使其支出的旅游总费用较少?

第九章不等式与不等式组检测题
(满分100分,时间60分钟)
一、填空题(共10小题,每题3分,共30分)
1.“的一半与2的差不大于”所对应的不等式是.
2.不等号填空:若ab0,则;;.
3.若1,则0用“”“=”或“”号填空).
4.直接写出下列不等式(组)的解集:①②③.
5.当时,代数式的值不大于零.
6.某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是.
7.不等式1,的正整数解是.
8.不等式的最大整数解是.
9.不等式的解集为3则.
10.不等式组的解为.
二、选择题(共4小题,每题4分,共16分)
11.不等式的解集在数轴上表示正确的是()

12.不等式的解集为()A.B.0C.0D.
13.不等式6的正整数解有()A.1个B.2个C.3个D.4个
14..已知关于的不等式组无解,则的取值范围是()
A.B.C.D.
三、解答题(共54分)
15.解不等式(组)(4×6=24分)

16.(7分)代数式的值不大于的值,求的范围

17.(7分)方程组的解为负数,求的范围.

18.(8分)某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分.某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?

19.(8分)国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

中考复习方程与不等式的综合应用学案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《中考复习方程与不等式的综合应用学案》,欢迎大家阅读,希望对大家有所帮助。

课时9方程与不等式的综合应用

班级________姓名_________

【课前热身】

1.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()

A.至少20户B.至多20户C.至少21户D.至多21户

2.某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了多少支?

【考点链接】

应用问题中常见数量关系:

(1)行程类:路程=速度时间,解题时分清相向、同向、反向、相遇、追及、早到、晚到、顺流、逆流等含义。

(2)工程类:工作量=工作效率工作时间,在工作量不明确的情况下,一般把工作量看作1.

(3)利润类:利润=售价—进价=进价利润率

【典例精析】

例1.在一条笔直的公路上有A、B两地,它们相距150千米,甲、乙两部巡警车分别从A、B两地同时出发,沿公路匀速相向而行,分别驶往B、A两地.甲、乙两车的速度分别为70千米/时、80千米/时,设行驶时间为x小时.

(1)从出发到两车相遇之前,两车的距离是多少千米?(结果用含x的代数式表示)

(2)已知两车都配有对讲机,每部对讲机在15千米之内(含15千米)时能够互相通话,求行驶过程中两部对讲机可以保持通话的时间最长是多少小时?

例2.师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:

(1)徒弟平均每天组装多少辆摩托车(答案取整数)?

(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?

例3.某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.

(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?

(2)该超市为使甲、乙两种商品共80件的总利润(利润售价进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.

【当堂反馈】

1、商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品的件数是.

2、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.

(1)求该校八年级学生参加社会实践活动的人数;

(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.

3.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.

(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.

【课后精练】

1、“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:

单价(万元/台)每台处理污水量(吨/月)

A型12240

B型10200

(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式.

(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?

2.下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定要满载,并且每辆汽车只能装一种蔬菜).

甲乙丙

每辆汽车能满载的吨数211.5

每吨蔬菜可获利润(百元)574

(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?

(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润,最大利润是多少?

3、去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.

(1)求饮用水和蔬菜各有多少件?

(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;

(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?

文章来源:http://m.jab88.com/j/71837.html

更多

最新更新

更多