88教案网

二次根式复习导学案

每个老师需要在上课前弄好自己的教案课件,到写教案课件的时候了。教案课件工作计划写好了之后,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编帮大家编辑的《二次根式复习导学案》,希望能对您有所帮助,请收藏。

一.学习目标:
1.能够比较熟练应用二次根式的性质进行化简;
2.能够比较熟练进行二次根式的运算;
3.会运用二次根式的性质及运算解决简单的实际问题.
二.学习重点:二次根式的性质应用及运算.
学习难点:二次根式的应用.
三.教学过程
知识网络图

知识点梳理
1.一般地,式子叫做二次根式.特别地,被开方数不小于.
2.二次根式的性质:
⑴a.(a);⑵(a)2=(a);⑶a2=_____.
3.二次根式乘法法则:
⑴ab=(a≥0,b≥0);⑵ab=(a≥0,b≥0).
4.二次根式除法法则:
⑴ab=(a≥0,b>0);⑵ab=(a≥0,b>0).
5.化简二次根式实际上就是使二次根式满足:⑴;
⑵;⑶.
6.经过化简后,的二次根式,称为同类二次根式.
7.一般地,二次根式相加减,先化简每个二次根式,然后.
8.实数中的运算律、乘法公式同样适用于二次根式的混合运算
边讲边练
Ⅰ.二次根式有意义求取值范围
1.要使x-2有意义,则x的取值范围是.
变式:若分别使1x-2,1x-2,3-xx-2有意义,那么x的取值范围又该如何?

2.要使13-x有意义,则x的取值范围是.
3.使x+1,1x,(x-3)0三个式子都有意义的x的取值范围是.
4.使x+1x-1=x2-1成立的条件;1-xx-2=1-xx-2成立的条件是.
5.若y=2x-5+5-2x-3.则2xy=.

Ⅱ.二次根式的非负性求值
1.已知a+2+b-1=0,那么(a+b)2011=.
2.已知x,y是实数,且3x+4+y2-6y+9=0,则xy=.
3.若4x-8+x-y-m=0,当y>0时,则m的取值范围.
4.若a-3与2-b互为相反数,那么代数式-1a+6b的值为.
5.已知△ABC的三边a、b、c满足a2+b+c-1-2=10a+2b-4-22,则△ABC为.
Ⅲ.利用公式a2=a化简
1.(-7)2=;(2)(3-π)2=;(3)62=
2.已知x<1,则化简x2-2x+1的结果=;若<0,化简a-3-a2=.
3.当a=2时,代数式a+1-2a+a2=;化简(a-1)11-a=.
5.(a-3)2=3-a成立,则a的取值范围是______.
6.若x3+4x2=-xx+4,则x的取值范围是.
7.若x-1=12,则代数式1x-x2-2+1x2的值为.

8.已知实数a、b、c在数轴上的位置如图所示,试化简(a+c)2-b-c.

9.若-3≤x≤2时,试化简│x-2│+(x+3)2+x2-10x+25.

Ⅳ.最简与同类二次根式
1.下列各式中,不能再化简的二次根式是()
A.3a2B.23C.24D.30
2.下列各式中,是最简二次根式是()
A.8B.70C.99D.1x
3.下列是同类二次根式的一组是()
A.12,-32,18B.5,75,1245C.4x3,22xD.a1a,a3b2c
4.若二次根式2a-4与6是同类二次根式,则a的值为.
5.化简后,根式b-a3b和2b-a+2是同类根式,那么a=_____,b=______.

Ⅴ.二次根式的运算
1.化简:⑴312=;⑵15+16=;⑶18a=.
2.计算:212-613+8=.
3.计算12(2-3)=.
4.计算⑴(2+3)(2-3)=;⑵(5-2)2010(5+2)2011=.
5.下列各式①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有()
A.3个B.2个C.1个D.0个
6.下列各式计算正确的是()
A.2+3=5B.2+2=22C.33-2=22D.12-102=6-5
7.计算:
⑴32-212-13-62⑵239x+6x4-2x1x

⑶(48-413)-(313-40.5)⑷(218-18)-(12+2-213)

⑸23x18x+12xx8-x22x3⑹(32-45)2⑺(3-22)(22-3)
⑻(1-23)(1+23)-(1+3)2⑼(3+2-5)(3―2―5)

8.若x=5+32,y=5—32,求代数式的值.
⑴x2-xy+y2⑵xy+yx

9.观察下列各式:32-1=2×4,42-1=3×5,52-1=4×6……将你猜想到的规律用一个式子来表示:.

10.有这样一类题目:将a±2b化简,如果你能找到两个数m、n,使m2+n2=a且mn=b,则将a±2b将变成m2+n2±2mn,即变成(m+n)2开方,从而使得a±2b化简.
例如,5±26=3+2+26=(3)2+(2)2+22×3=(3+2)2,
∴5±26=(3+2)2=(3+2)
请仿照上例解下列问题:
(1)8-215;(2)4+23

相关阅读

二次根式复习学案


教案课件是老师上课中很重要的一个课件,大家应该要写教案课件了。只有制定教案课件工作计划,新的工作才会如鱼得水!你们会写适合教案课件的范文吗?小编特地为您收集整理“二次根式复习学案”,仅供您在工作和学习中参考。

二次根式复习课

班级姓名学号

一、学习目标:

1、能够比较熟练应用二次根式的性质进行化简.

2、能够比较熟练进行二次根式的运算.

3、会运用二次根式的性质及运算解决简单的实际问题.

二、学习重、难点

重点:二次根式的性质的应用,二次根式的运算,二次根式的应用.

难点:二次根式性质的应用

三、知识回顾

1.下列各式是二次根式的有()个

,,,,,

A.2B.3C。4D.5

2、有意义,则x的范围。

3、若,则a。

4、写出一个的同类二次根式。

5、(1)=______(2)=(3)=

(4)(5)=(6)

四、典型例题

例1:能使等式成立的的取值范围是()

A.B.C.x2D.

例2:当1≤x≤5时,。

例3:已知xy0,化简二次根式x-yx2的正确结果为()

A、yB、-yC、-yD、--y

例4:计算

(1)(2)9a×a31a÷12aa3

(3)(4)(3+2)-1+(-2)2+3-8

(5)先化简再求值:,期中

五、随堂反馈

一、选择:

1.下列选项中,对任意实数a都有意义的二次根式是()

A.a-1B.1-aC.(1-a)2D.11-a

2.下列式子中正确的是()

A.B.

C.D.

3.已知x、y为实数,y=x-2+2-x+4,则yx的值等于()

A.8B.4C.6D.16

4.下列根式中,是最简二次根式的是()

A.B.C.D.

5.等式成立的条件是()

A、x≠5B、x≥3C、x≥3且x≠5D、x5

6.若a0,则化简得()

A、B、C、D、

7.若,则()

A、a、b互为相反数B、a、b互为倒数C、ab=5D、a=b

9.若,则()

A、B、C、D、以上答案都不对

二、填空:

10、a+4+a+2b-2=0,则ab=

11、若最简二次根式与是同类二次根式,则。

12、若5的整数部分是a,小数部分是b,则a-1b=

13.如果,那么x的范围

14.观察下列各式:32-1=2×4,42-1=3×5,52-1=4×6……将你猜想到的规律用一个式子来表示:_____________________________________________。

15、若实数a、b、c在数轴上的位置如图则化简

三、化简或计算

16、化简:

(1)、45(2)(3)(4)

17.计算:

(1)312-248+8(2)32-512+618

(9)当时,求的值。

(10)已知m是的小数部分,求的值

四、简答:

18、(12+1+13+2+14+3+…+12006+2005)(2006+1)

19、如图,B地在A地的正东方向,两地相距282km,A,B两地之间有一条东北走向的高速公路,A,B两地分别到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处.至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为11Okm/h,问该车有否超速行驶?

《二次根式》复习学案


第5课《二次根式》复习学案
班级:_________姓名:__________评价:__________
【考点扫描】
1..(-3)2=________.
2.已知|a-1|+7+b=0,则a+b=()
A.-8B.-6C.6D.8
3.下列根式中,与18为同类二次根式的是()
A.2B.3C.5D.6
4.已知:一个正数的两个平方根分别是2a-2和a-4,则a的值是________.
5.化简:8×2-12

【例题精讲】
1.下列说法中,错误的是()
A.3是3的平方根B.3是3的算术平方根
C.3的平方根就是3的算术平方根D.-3的平方是3
2.若x2=16,则x=________.
3.下列各式中,正确的是()
A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±3
4.下列二次根式中,最简二次根式是()
A.2x2B.b2+1C.1xD.4a
5.x+1+(y-2013)2=0,则xy=________.
6.如果(2a-1)2=1-2a,则()

A.a<12B.a≤12C.a>12D.a≥12
7.设a=19-1,a在两个相邻整数之间,则这两个整数是().
A.1和2B.2和3C.3和4D.4和5
8.计算(348-227)÷3.

【当堂检测】
1.4的平方根是().
A.2B.16C.±2D.±16
2.下列运算正确的是().
A.25=±5B.43-27=1
C.18÷2=9D.2432=6
3.下列各式计算正确的是().
A.2+3=5
B.2+2=22
C.32-2=22
D.12-102=6-5
4.写出一个比大的整数是。
5.已知、为两个连续的整数,且,则.
6.当时,=_____________.
7.若x,y为实数,且满足,则()2013的值是.
8.计算:.
9.计算:

二次根式(1)导学案


一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“二次根式(1)导学案”,仅供参考,欢迎大家阅读。

课题12.1二次根式(1)自主空间
学习目标(1)了解二次根式的概念,初步理解二次根式有意义的条件.
(2)通过具体问题探求并掌握二次根式的基本性质:当≥0时,=;能运用这个性质进行一些简单的计算与化简。
学习重难点教学重点二次根式的概念以及二次根式的基本性质
教学难点经历知识产生的过程,探索新知识.
教学流程



航问题:
1.回顾:什么叫平方根?什么叫算术平方根?
2.计算:
(1)16的平方根是的平方根是.
(2)如图,在RABC中,AB=50cm,BC=25cm,则AC=cm.
(3)圆的面积为S,则圆的半径是.
(4)正方形的面积为,则边长为.
3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?



究一、概念探究:
1.二次根式的定义.
一般地,式子(≥0)叫做二次根式,a叫做被开方数。
说说你对二次根式的认识
当a0时,是否有意义?
当≥0时,是否可能为负数?
总结:二次根式有意义的条件是
2.二次根式性质的探索:
22=4,即()2=4;32=9,即()2=9;……
观察上述等式的两边,你得到什么启示?
当≥0时,
二、例题分析:
例1:x是怎样的实数时,式子在实数范围内有意义?
解:由x-5≥0,得x≥5
当x≥5时,式子在实数范围内有意义。

例2:计算
(1)




究(2)

(3)≥0)

三、展示交流
1.练习:说一说,下列各式是二次根式吗?为什么?
(1)(2)(3)

2.x是怎能样的实数时,下列式子在实数范围内有意义
(1)(2)(3)
(4)(5)(6)

3.计算.
(1)(2)
(3)(4)

四、提炼总结
1.什么叫做二次根式?你们能举出几个例子吗?
二次根式的被开方数有什么条件限制?
3.当≥0时,=?



标1.下列式子中不一定是二次根式的是()
A:B:C:D:
2.是实数时,下列式子中一定有意义的是()
A:B:C:D:
3.若有意义,则一定是()
A:正数B:负数C:非正数D:非负数



标4.写出下列式子有意义的的取值范围
(1)(2)(3)(4)
5.计算
(1)(2)
(3)(4)
6.先把下列各式写成平方差的形式,再分解因式
(1)(2)

文章来源:http://m.jab88.com/j/71839.html

更多

最新更新

更多