中考数学重难点专题讲座
第三讲动态几何问题
【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。在这一讲,我们着重研究一下动态几何问题的解法,
第一部分真题精讲
【例1】(2010,密云,一模)如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).
(1)当时,求的值;(2)试探究:为何值时,为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。【解析】解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.
∵,.∴.(根据第一讲我们说梯形内辅助线的常用做法,成功将MN放在三角形内,将动态问题转化成平行时候的静态问题)∴.(这个比例关系就是将静态与动态联系起来的关键)∴.解得.【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解【解析】
做好教案课件是老师上好课的前提,是时候写教案课件了。我们制定教案课件工作计划,才能更好地安排接下来的工作!有没有好的范文是适合教案课件?下面是由小编为大家整理的“九年级数学竞赛开放性问题评说辅导教案”,欢迎您参考,希望对您有所助益!
【例题求解】
【例1】如图,⊙O与⊙O1外切于点T,PT为其内公切线,AB为其外公切线,且A、B为切点,AB与PT相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(杭州市中考题)
思路点拨为了能写出更多的正确结论,我们可以从以下几分角度作探索,线段关系,角的关系、三角形的关系及由此推出的相应结论.
注:明确要求将数学开放性题作为中考试题,还是近一二年的事情.开放性问题没有明确的目标和解题方向,留有极大的探索空间.
解开放性问题,不具有定向的解题思路,解题时总要有合情合理、实事求是的分析,要把归纳与演绎协调配合起来,把直觉发现与逻辑推理相互结合起来,把一般能力和数学能力同时发挥出来.杭州市对本例评分标准是以正确结论的难易程度为标准灵活打分,分值直接反映考生的能力及创新性.
【例2】如图,四边形ABCD是⊙O的内接四边形,A是BD的中点,过A点的切线与CB的延长线交于点E.
(1)求证:ABDA=COBE;
(2)若点E在CB延长线上运动,点A在BD上运动,使切线EA变为割线EFA,其他条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)
(北京市海淀区中考题)
思路点拨对于(2),能画出图形尽可能画出图形,要使结论ABDA=CDBE成立,即要证△ABE∽△CDA,已有条件∠ABE=∠CDA,还需增加等角条件,这可由多种途径得到.
注:许多开放性问题解题思路也是开放的(多角度、多维度思考),探索的条件或结论并不惟一.故解开放性问题,应尽可能深入探究,发散思维,提高思维的品质,切忌入宝山而空返.
【例3】(1)如图1,若⊙O1与⊙O2外切于A,BC是⊙O1与⊙O2外公切线,B、C为切点,求证:AB⊥AC.
(2)如图2,若⊙O1与⊙O2外离,BC是⊙O1与⊙O2的外公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,BM、CN的延长线交于P,则BP与CP是否垂直?证明你的结论.
(3)如图3,若⊙O1与⊙O2相交,BC是⊙O1与⊙O2的公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,Q是线段MN上一点,连结BQ、CQ,则BQ与CQ是否垂直?证明你的结论.
思路点拨本例是在基本条件不变的情况下,通过运动改变两圆的位置而设计的,在运动变化中,结论可能改变或不变,关键是把(1)的证法类比运用到(2)、(3)问题中.
注:开放性问题还有以下呈现方式:
(1)先提出特殊情况进行研究,再要求归纳猜测和确定一般结论;
(2)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论应发生的变化,或改变结论时其条件相应发生的变化.
【例4】已知直线(0)与轴、轴分别交于A、C两点,开口向上的抛物线过A、C两点,且与轴交于另一点B.
(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于,求这条直线和抛物线的解析式;
(2)是否存在这样的抛物线,使得tan∠ACB=2,且△ABC外接圆截得轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.
(无锡市中考题)
思路点拨(1)通过“点B到直线AC的距离等于”,利用等积变换求出A、B两点的距离;(2)先假设存在这样的抛物线,再由条件推理计算求得,最后加以验证即可.
注:解存在性开放问题的基本方法是假设求解法,即假设存在→演绎推理→得出结论(合理或矛盾).
【例5】如图,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”.在研究“正度”时,应保证相似三角形的“正度”相等.
设等腰三角形的底和腰分别为、,底角和顶角分别为、.要求“正度”的值是非负数.
同学甲认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形;
同学乙认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形.
探究:(1)他们的方案哪个较为合理,为什么?
(2)对你认为不够合理的方案,请加以改进(给出式子即可);
(3)请再给出一种衡量“正度”的表达式.(安徽省中考题)
思路点拨通过阅读,正确理解“正度”这个新概念,同时也要抓住“在研究‘正度’时,应保证相似三角形的‘正度’相等”这句话的实质,可先采取举实例加深对“正度”的理解,再判断方案的合理性并改进方法.
注:(1)解结论开放题往往要充分利用条件进行大胆而合理的猜想,通过观察、比较、联想、猜测、推理和截判断等探索活动,发现规律,得出结论.
(2)阅读是学习的重要途径,在这种阅读型研究性问题中,涌现了许多介绍新的知识和新的研究方法的问题,能极大地开阔我们的视野.
(3)研究性学习是课程改革的一个亮点,研究性学习是美国芝加哥大学教授施瓦布在《作为探究的科学教学》的演讲时提出的.他主张引导学生直接用科学研究的方式进行教学,即设定情境、提出问题、分析问题、设计实验、验证假设、分析结果、得出结论.研究性问题是近年中考中出现的一种新题型,它要求我们适应新情况,通过实践,增强探究和创新意识,学习科学研究方法.
学力训练
1.如图,是四边形ABCD的对称轴,如果AD∥BC,有下列结论:
①AB∥CD,②AB=BC;③AB⊥BC;④AO=OC.
其中正确的是.
(把你认为正确的结论的序号都填上)(安徽省中考题)
2.如图,是一个边长为的小正方形与两个长、宽分别为、的小矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式:①;②;③.
(泉州市中考题)
3.有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线;
乙:与轴两个交点的横坐标都是整数;
丙:与轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请你写出满足上述全部特点的一个二次函数解析式:.
(北京市东城区中考题)
4.如图,已知AB为⊙O的直径,直线与⊙O相切于点D,AC⊥于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.
(威海市中考题)
5.在一个服装厂里有大量形状为等腰直角三角形的边角布料(如图).现找出其中的一种,测得∠C=90°,AC=BC=4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).
(黄冈市中考题)
6.如图,抛物线与x轴交于点A(x1,0),B(x2,0)(x10x2),与y轴交于点C(0,-2),若OB=4OA,且以AB为直径的圆过C点.
(1)求此抛物线的解析式;
(2)若点D在此抛物线上,且AD∥CB.
①求D点的坐标;
②在x轴下方的抛物线上,是否存在点P使得△APD的面积与四边形ACBD的面积相等?若存在,求出点P坐标;若不存在,请说明理由.
(连云港市中考题)
7.给定四个命题:①sinl5°与sin75°的平方和为1;②函数的最小值为-10;③;④,则x=10”,其中错误的命题的个数是.
(“我爱数学”初中生夏令营试题)
8.①在实数范围内,一元二次方程的根为;②在△ABC中,若AC2+BC2AB2,则△ABC是锐角三角形;③在△ABC和△AB1C1中,、、分别为△ABC的三边,、、分别为△AB1C1的三边,若,,,则△ABC的面积大S于△AB1C1的面积S1.以上三个命题中,真命题的个数是()
(全国初中数学联赛试题)
A.0B.1C.2D.3
9.已知:AB是⊙O的直径,AP、AQ是⊙O的两条弦,如图1,经过B做⊙O的切线,分别交直线AP、AQ于点M、N.可以得出结论APAM=AQAN成立.
(1)若将直线向上平行移动,使直线与⊙O相交,如图2所示,其他条件不变,上述结论是否成立?若成立,写出证明,若不成立,说明理由;
(2)若将直线继续向上平行移动,使直线与⊙O相离,其他条件不变,请在图3上画出符合条件的图形,上述结论成立吗?若成立,写出证明;若不成立,说明理由.
10.如图,已知圆心A(0,3),A与轴相切,⊙B的圆心在轴的正半轴上,且⊙B与⊙A外切于点P,两圆的公切线MP交轴于点M,交轴于点N.
(1)若sin∠OAB=,求直线MP的解析式及经过M、N、B三点的抛物线的解析式;
(2)若A的位置大小不变,⊙B的圆心在轴的正半轴上移动,并使⊙B与⊙A始终外切,过M作⊙B的切线MC,切点为C在此变化过程中探究:
①四边形OMCB是什么四边形,对你的结论加以证明;
②经过M、N、B点的抛物线内是否存在以BN为腰的等腰三角形?若存在,表示出来;若不存在,说明理由.(山西省中考题)
11.有一张矩形纸片ABCD,E、F、分别是BC、AD上的点(但不与顶点重合),若EF将矩形ABCD分成面积相等的两部分,设AB=,AD=,BE=.
(1)求证:AF=EC;
(2)用剪刀将该纸片沿直线EF剪开后,再将梯形纸片ABEF沿AB对称翻折,平移拼接在梯形ECDF的下方,使一底边重合,一腰落在DC的延长线上,拼接后,下方梯形记作EEBC.
①当为何值时,直线EE经过原矩形的一个顶点?
②在直线EE经过原矩形的一个顶点的情形下,连结BE,直线BE与EF是否平行?你若认为平行,请给予证明;你若认为不平行,试探究当与有何种数量关系时,它们就垂直?
(江西省中考题)
12.(1)证明:若取任意整数时,二次函数总取整数值,那么,、、都是整数.
(2)写出上述命题的逆命题,且证明你的结论.(全国初中数学竞赛题)
13.已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.
(1)这样的四边形有几个?
(2)求这样的四边形边长的平方和的最小值.(全国初中数学联赛题)
参考答案
一般给学生们上课之前,老师就早早地准备好了教案课件,规划教案课件的时刻悄悄来临了。在写好了教案课件计划后,这样我们接下来的工作才会更加好!你们会写多少教案课件范文呢?小编特地为您收集整理“中考数学专题:动态几何问题”,希望对您的工作和生活有所帮助。
中考数学专题3动态几何问题
第一部分真题精讲
【例1】如图,在梯形中,,,,,梯形的高为.动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为(秒).
(1)当时,求的值;
(2)试探究:为何值时,为等腰三角形.
【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。
【解析】
解:(1)由题意知,当、运动到秒时,如图①,过作交于点,则四边形是平行四边形.
∵,.
∴.(根据第一讲我们说梯形内辅助线的常用做法,成功将MN放在三角形内,将动态问题转化成平行时候的静态问题)
∴.(这个比例关系就是将静态与动态联系起来的关键)
∴.解得.
【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC即可,于是就漏掉了MN=MC,MC=CN这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解
【解析】
(2)分三种情况讨论:
①当时,如图②作交于,则有即.(利用等腰三角形底边高也是底边中线的性质)
∵,
②当时,如图③,过作于H.
则,
③当时,
则.
.
综上所述,当、或时,为等腰三角形.
【例2】在△ABC中,∠ACB=45.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,,CD=,求线段CP的长.(用含的式子表示)
【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
【解析】:
(1)结论:CF与BD位置关系是垂直;
证明如下:AB=AC,∠ACB=45,∴∠ABC=45.
由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90,
∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.
∴∠BCF=∠ACB+∠ACF=90.即CF⊥BD.
【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解。
(2)CF⊥BD.(1)中结论成立.
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF∴∠ACF=∠AGD=45
∠BCF=∠ACB+∠ACF=90.即CF⊥BD
【思路分析3】这一问有点棘手,D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X。分类讨论之后利用相似三角形的比例关系即可求出CP.
(3)过点A作AQ⊥BC交CB的延长线于点Q,
①点D在线段BC上运动时,
∵∠BCA=45,可求出AQ=CQ=4.∴DQ=4-x,
易证△AQD∽△DCP,∴,∴,
.
②点D在线段BC延长线上运动时,
∵∠BCA=45,可求出AQ=CQ=4,∴DQ=4+x.
过A作交CB延长线于点G,则.CF⊥BD,
△AQD∽△DCP,∴,∴,
【例3】已知如图,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中,当取最小值时,判断的形状,并说明理由.
【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢?当然是利用角度咯.于是就有了思路.
【解析】
(1)证明:∵是等边三角形
∴
∵是中点
∴
(2)解:在等边中,
∴(这个角度传递非常重要,大家要仔细揣摩)
∵∴
∴∴(设元以后得出比例关系,轻松化成二次函数的样子)
【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X取对称轴的值时Y有最小值。接下来就变成了“给定PC=2,求△PQC形状”的问题了。由已知的BC=4,自然看出P是中点,于是问题轻松求解。
(3)解:为直角三角形
∵
∴当取最小值时,
∴是的中点,而
以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.
【例4】已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接.
(1)直接写出线段与的数量关系;
(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,.
你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.
(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)
【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。第二问将△BEF旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG之后,抛开其他条件,单看G点所在的四边形ADFE,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G点做AD,EF的垂线。于是两个全等的三角形出现了。
(1)
(2)(1)中结论没有发生变化,即.
证明:连接,过点作于,与的延长线交于点.
在与中,
∵,
∴.
∴.
在与中,
∵,
∴.
∴
在矩形中,
在与中,
∵,
∴.
∴.
∴
【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在动态问题专题中也是出于此原因,如果△BEF任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF的旋转过程中,始终不变的依然是G点是FD的中点。可以延长一倍EG到H,从而构造一个和EFG全等的三角形,利用BE=EF这一条件将全等过渡。要想办法证明三角形ECH是一个等腰直角三角形,就需要证明三角形EBC和三角形CGH全等,利用角度变换关系就可以得证了。
(3)(1)中的结论仍然成立.
【例5】已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.
(1)当=1时,CF=______cm,
(2)当=2时,求sin∠DAB′的值;
(3)当=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).
【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E在BC上和E在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。
【解析】
(1)CF=6cm;(延长之后一眼看出,EAZY)
(2)①如图1,当点E在BC上时,延长AB′交DC于点M,
∵AB∥CF,∴△ABE∽△FCE,∴.
∵=2,∴CF=3.
∵AB∥CF,∴∠BAE=∠F.
又∠BAE=∠B′AE,∴∠B′AE=∠F.∴MA=MF.
设MA=MF=k,则MC=k-3,DM=9-k.
在Rt△ADM中,由勾股定理得:
k2=(9-k)2+62,解得k=MA=.∴DM=.(设元求解是这类题型中比较重要的方法)
∴sin∠DAB′=;
②如图2,当点E在BC延长线上时,延长AD交B′E于点N,
同①可得NA=NE.
设NA=NE=m,则B′N=12-m.
在Rt△AB′N中,由勾股定理,得
m2=(12-m)2+62,解得m=AN=.∴B′N=.
∴sin∠DAB′=.
(3)①当点E在BC上时,y=;
(所求△AB′E的面积即为△ABE的面积,再由相似表示出边长)
②当点E在BC延长线上时,y=.
【总结】通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:
第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。
第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。
第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。
第二部分发散思考
【思考1】已知:如图(1),射线射线,是它们的公垂线,点、分别在、上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合),在运动过程中始终保持,且.
(1)求证:∽;
(2)如图(2),当点为边的中点时,求证:;
(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.
【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。
【思考2】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若<∠PBC<180°,
且∠PBC平分线上的一点D满足DB=DA,
(1)当BP与BA重合时(如图1),∠BPD=°;
(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;
(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.
【思路分析】本题中,和动点P相关的动量有∠PBC,以及D点的位置,但是不动的量就是BD是平分线并且DB=DA,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P点的轨迹就是以B为圆心,BA为半径的一个圆,那D点是什么呢?留给大家思考一下~
【思考3】如图:已知,四边形ABCD中,AD//BC,DC⊥BC,已知AB=5,BC=6,cosB=.
点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.
(1)当BO=AD时,求BP的长;
(2)点O运动的过程中,是否存在BP=MN的情况?若存在,请求出当BO为多长时BP=MN;若不存在,请说明理由;
(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围。
【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN和BP,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。
【思考4】在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.
【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。
第三部分思考题解析
【思考1解析】
(1)证明:∵,∴.∴.
又∵,∴.
∴.∴∽.
(2)证明:如图,过点作,交于点,
∵是的中点,容易证明.
在中,∵,∴.
∴.
∴.
(3)解:的周长,.
设,则.
∵,∴.即.
∴.
由(1)知∽,
∴.
∴的周长的周长.
∴的周长与值无关.
【思考2答案】
解:(1)∠BPD=30°;
(2)如图8,连结CD.
解一:∵点D在∠PBC的平分线上,
∴∠1=∠2.
∵△ABC是等边三角形,
∴BA=BC=AC,∠ACB=60°.
∵BP=BA,
∴BP=BC.
∵BD=BD,
∴△PBD≌△CBD.
∴∠BPD=∠3.-----------------3分
∵DB=DA,BC=AC,CD=CD,
∴△BCD≌△ACD.
∴.
∴∠BPD=30°.
解二:∵△ABC是等边三角形,
∴BA=BC=AC.
∵DB=DA,
∴CD垂直平分AB.
∴.
∵BP=BA,
∴BP=BC.
∵点D在∠PBC的平分线上,
∴△PBD与△CBD关于BD所在直线对称.
∴∠BPD=∠3.
∴∠BPD=30°.
(3)∠BPD=30°或150°.
图形见图9、图10.
【思考3解析】
解:(1)过点A作AE⊥BC,在Rt△ABE中,由AB=5,cosB=得BE=3.
∵CD⊥BC,AD//BC,BC=6,
∴AD=EC=BC-BE=3.
当BO=AD=3时,在⊙O中,过点O作OH⊥AB,则BH=HP
∵,∴BH=.
∴BP=.
(2)不存在BP=MN的情况-
假设BP=MN成立,
∵BP和MN为⊙O的弦,则必有∠BOP=∠DOC.
过P作PQ⊥BC,过点O作OH⊥AB,
∵CD⊥BC,则有△PQO∽△DOC-
设BO=x,则PO=x,由,得BH=,
∴BP=2BH=.
∴BQ=BP×cosB=,PQ=.
∴OQ=.
∵△PQO∽△DOC,∴即,得.
当时,BP==>5=AB,与点P应在边AB上不符,
∴不存在BP=MN的情况.
(3)情况一:⊙O与⊙C相外切,此时,0<CN<6;------7分
情况二:⊙O与⊙C相内切,此时,0<CN≤.-------8分
【思考4解析】
解:(1)①直线与直线的位置关系为互相垂直.
证明:如图1,设直线与直线的交点为.
∵线段分别绕点逆时针旋转90°依次得到线段,
②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.
(2)∵四边形是平行四边形,
∴.
∴.
可得.
由(1)可得四边形为正方形.
∴.
①如图2,当点在线段的延长线上时,
∵,
∴.
∴.
②如图3,当点在线段上(不与两点重合)时,
∵,
∴.
③当点与点重合时,即时,不存在.
综上所述,与之间的函数关系式及自变量的取值范围是或.
文章来源:http://m.jab88.com/j/71762.html
更多