20.2矩形的判定(2)
教学目标:
1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
2.通过矩形判定的教学渗透矛盾可以互相转化的唯物辩证法思想
教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式.
教学重点:矩形的判定.
教学难点:矩形的判定及性质的综合应用.
教具学具准备:教具(一个活动的平行四边形)
教学步骤:
一.复习提问:1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?二.引入新课
设问:1.矩形的判定.
2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)
矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生一道写出证明过程。)
归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2.矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用。(让学生思考,然后师生共同完成)
例:已知的对角线,相交于
,△是等边三角形,,求这个平行
四边形的面积(图2).
分析解题思路:(1)先判定为矩形.(2)求出△的直角边的长.(3)计算.
三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线相等.判定方法3的两个条件是:①是四边形,②有三个直角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形-—是矩形。
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
补充例题
例1:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
∴AC=BD
∴AC、BD互相平分于O
∴AO=BO=CO=DO
∵AE=BF=CG=DH
∴EO=FO=GO=HO
又HF=EG
∴EFGH为矩形
例2:判断
(1)两条对角线相等四边形是矩形()
(2)两条对角线相等且互相平分的四边形是矩形()
(3)有一个角是直角的四边形是矩形()
(4)在矩形内部没有和四个顶点距离相等的点()
分析及解答:
(1)如图(1)四边形ABCD中,AC=BD,但ABCD不为矩形,∴×
(2)对角线互相平分的四边形即平行四边形,∴对角线相等的平行四边形为矩形∴√
(3)如图(2),四边形ABCD中,∠B=90°,但ABCD不为矩形∴×
(4)矩形对角线的交点O到四个顶点距离相等∴×,如图(3),
29.6相似多边形及其性质
教学目标
1.知识与技能
①相似三角形对应高的比,对应角的比,对应叫平分线的比和对应中线的比和相似比的关系。
②利用相似三角形的性质解决一些实际问题。
2.情感与态度
①相似三角形中对应线段的比和相似比的关系,培养学生的探索精神和合作意识。
②通过运用相似三角形的性质,增强学生的应用意识
重点与难点
重点:相似三角形中对应线段比值的推倒,运用相似三角形的性质解决实际问题。
难点:相似三角形的性质的运用。
教学思考
通过例题的分析讲解,让学生感受相似三角形的性质在实际生活中的应用。
解决问题
在理解并掌握相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比的过程中,培养学生利用相似三角形的性质解决现实问题的意识和应用能力
教学方法
引导启发式
课前准备
幻灯片
教学设计
□教师活动□学生活动
一、创设问题情境,引入新课
带领学生复习相似多边形的性质及相似三角形的性质,并提出疑问“在两个相似三角形中,是否只有对应角相等,对应边成比例这个性质?”从而引导学生探究相似三角形的其他性质。
认真听课、思考、回答老师提出的问题。
二、新课讲解
1、做一做
以实际问题做引例,初步让学生感知相似三角形对应高的比和相似比的关系。
钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,图纸上的△ABC表示该零件的横断面△A′B′C′,CD和C′D′分别是它们的高.
(1),,各等于多少?
(2)△ABC与△A′B′C′相似吗?如果相似,请说明理由,并指出它们的相似比.
(3)请你在图4-38中再找出一对相似三角形.
(4)等于多少?你是怎么做的?与同伴交流.
阅读课本材料,弄清题意,根据已有的经验积极思考,动手操作画图,在练习本上作答。
依次回答课本提出的4个问题并加以思考
2、议一议
根据上面的引例让学生猜测,证明相似三角形对应高的比,对应角平分线的比和对应中线的比都等于相似比。
已知△ABC∽△A′B′C′,△ABC与△A′B′C′的相似比为k.
(1)如果CD和C′D′是它们的对应高,那么等于多少?
(2)如果CD和C′D′是它们的对应角平分线,那么等于多少?如果CD和C′D′是它们的对应中线呢?
学生经历观察,推证、讨论,交流后,独立回答。
3、教师归纳
总结相似三角形的性质:
相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生理解、熟记。
归纳、类比加深对相似性质的理解
三、课堂练习:
例题讲解,利用相似三角形的性质解决一些问题。
如图所示,在等腰三角形ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形.
(1)△ASR与△ABC相似吗?为什么?
(2)求正方形PQRS的边长.
阅读例题材料,弄懂题意,然后运用所学知识作答。写出解题过程.
四、探索活动:
如图,AD,A’D’分别是△ABC和△A’B’C’的角平分线,且AB:A’B’=BD:B’D’=AD:A’D’,你认为△ABC∽△A’B’C’吗?
针对此题,学生先独立思考,然后展开小组讨论,充分交流后作答。
五、课时小结
指导学生结合本节课的知识点,对学习过程进行总结。
本节课主要根据相似三角形的性质和判定判定推导了相似三角形的性质、相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比。
学生畅所欲言,谈学习的体会,遇到的困难以及获得的启发。
六、布置课后作业:
课后习题节选
独立完成作业。
板书设计
29.6相似多边形及其性质
一、1.做一做
2.议一议
3.例题讲解
二、课堂练习
三、课时小节
四、课后作业
教后反思
文章来源:http://m.jab88.com/j/70264.html
更多