88教案网

应用二元一次方程组——里程碑上的数导学案

教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的应用二元一次方程组——里程碑上的数导学案,欢迎阅读,希望您能够喜欢并分享!

学科

数学

年级

八年级

授课班级

主备教师

参与教师

课型

新授课

课题

§5.5应用二元一次方程组——里程碑上的数

备课组长审核签名

教研组长审核签名

【学习目标】1:利用二元一次方程组解决数字问题和行程问题,培养学生分析问题和解决问题的能力。

2:初步体会到方程组解决实际问题的一般步骤。

【学习重点】体验列方程组解决实际问题的过程,理解题意,找出适当的等量关系,并列出方程组。

学习内容(学习过程)

一、自主预习(感知)

1、一个两位数,十位数字为a,个位数字为b,则这两个数表示为。

2、一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三数表示为。

新|

二、合作探究(理解)

1、课本P120小明爸爸骑摩托车问题,完成书上的填空;

2、课本P121例题,完成书上填空。

3、议一议

列二元一次方程组解决实际问题的一般步骤是怎么样的?与同伴进行交流。

三、轻松尝试(运用)

1.李刚骑摩托车在公路上高速行驶,早晨7:00时看到里程碑上的数是一个两位数,它的数字之和是9;8:00时看里程碑上的两位数与7:00时看到的个位数和十位数颠倒了;9:00时看到里程碑上的数是7:00时看到的数的8倍,李刚在7:00时看到的数字是。

2、小颖家离学校4800米,其中有一段为上坡路,另一段为下坡路。她跑步去学校共用了30分。已知小颖在上坡时的平均速度是6千米/时,下坡时的平均速度是12千米/时。问小颖上、下坡各多少千米?

A.1.2,3.6;

B.1.8,3;

C.1.6,3.2.

3、一个两位数,个位数字比十位数字大4,如果把这两个数的位置对调,那么所得的新数与原数的和是154,求原来两位数。

四、拓展延伸(提高)

五、收获盘点(升华)

你认为列二元一次方程组解决问题应该注意些什么问题?步骤是怎样的呢?

六、当堂检测(达标)

1、一个两位数,减去他的各位数之和的3倍,结果是23,这个两位数除以它的各位数数之和,商是5,余数是1。这两位数是多少?

1、小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。原来两个加数是多少?

七、课外作业(巩固)

1、必做题:①整理导学案并完成下一节课导学案中的预习案。

②完成《优化设计》中的本节内容。

2、思考题:

学习反思:

相关知识

二元一次方程组


每个老师为了上好课需要写教案课件,又到了写教案课件的时候了。只有规划好教案课件工作计划,才能更好地安排接下来的工作!你们会写多少教案课件范文呢?小编特地为大家精心收集和整理了“二元一次方程组”,希望对您的工作和生活有所帮助。

课题

第十章二元一次方程组

课时分配

本课(章节)需2课时

本节课为第2课时

为本学期总第课时

10.3解二元一次方程组(加减消元法)

教学目标

1.使学生会用加减法解二元一次方程组。

2.学生通过解决问题,了解代入法与加减法的共性及个性。

重点

探寻用加减法解二元一次的方程组的进程。

难点

消元转化的过程

教学方法

讲练结合、探索交流

课型

新授课

教具

投影仪

教师活动

学生活动

情景设置:

小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

新课讲解:

列出方程组

1.解方程组

分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

板演:

解:〈1〉+〈2〉得:

4x=6

x=

把x=代入〈1〉得

+2y=1

解出这个方程,得

y=

所以原方程组的解是

2.解方程组

通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?

解:〈1〉3,得

15x-6y=12〈3〉

〈2〉2,得

4x-6y=-10〈4〉

〈3〉-〈4〉,得

11x=22

x=2

将x=2代入〈1〉,得

52-2y=4

y=3

所以原方程组的解是

加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

练一练:

解方程组

小结:

加减消元法关键是如何消元,化二元为一元。

先观察后确定消元。

教学素材:

A组题:解下列方程组:

(1)

(2)

(3)

(4)

(5)

B组题:运用“转化”的思想方法,你能解下面的三元一次方程组吗?

(1)

(2)

学生读题,议一议

学生想一想,如感到困难则看道简单题。

由学生观察,如何求出x,y的值,学生再讨论。

试一试。学生口述。

老师板演

得到一元一次方程

学生再观察,议一议

①消去哪个未知数

②怎样消去?

P1121(1)(2)(3)(4)

作业

习题11.3P1121(3)(4)3,4

板书设计

方程组解方程组

(1)

(2)

(3)

教学后记

二元一次方程组学案


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“二元一次方程组学案”,供您参考,希望能够帮助到大家。

10.2二元一次方程组(2)
班级姓名学号
【课前准备】:
箱子里有许多的红球和蓝球,现摸到1个红球,3个绿球,共得11分,你知道摸到1个红球得多少分?1个绿球得多少分?
再摸一次,又摸到了3个红球,2个绿球,共得12分。你知道摸到1个红球、1个绿球各得多少分?

【探索新知】
问题一:问题中的量满足怎样的相等关系?
问题中的量应同时满足以上两个相等关系.如果设摸到1个红球得x分,摸到1个绿球得y分.那么可以得到方程:
______________.
_______________
因而将这两个方程组成二元一次方程组:
___________
____________
问题二:根据上面的方程组,请你猜一猜,“摸到红、绿球得分”问题的答案。你用了什么方法?
方程(1)的解是
……
方程(2)的解是
……
可以看出___________是这两个方程的公共解,我们把_______________________叫做二元一次方程组的解。
因此,我们知道,摸到1个红球得2分,1个绿球得3分.
【知识运用】
例1:二元一次方程组的解是()
A.B.C.D.

例2:你能求出“鸡兔同笼”问题中二元一次方程组的解吗?
练习应用
(1)如果是方程组的解,则m=,n=.

【当堂反馈】
1.有3对数:①②③在这3对数中,是方程的解;是方程的解;是二元一次方程组的解.

2.下列各对数值中,哪一组是二元一次方程组的解?
3.如果是二元一次方程组的解.求m、n的值.

4.已知关于x、y的二元一次方程组的解满足,求a的值.

5.甲种饮料每瓶2.5元,乙种饮料每瓶1.5元,某人买了x瓶甲种饮料,y瓶乙种饮料,共花了34元。
(1)列出关于x、y的二元一次方程;
(2)如果甲种饮料和乙种饮料共买16瓶,列出关于x、y的二元一次方程组,并找出它的解。

6、写出解是的二元一次方程组?你能写出几个?

7、1)方程y=2x-3的解有个;
2)方程3x+2y=1的解有个;
3)方程组y=2x-3的解有个
3x+2y=1

认识二元一次方程组导学案


5.1.1认识二元一次方程组
姓名:_________班级:___________使用时间:________
【学习过程】
一:复习旧知:
问题1:你能写出一个一元一次方程吗?

问题2:形如()叫一元一次方程.
二:情境引入:
问题1:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
若设老牛驮了个包裹,小马驮了个包裹。则:
①根据“已知老牛比小马多驮2个包裹”你能得到怎样的方程?

②“如果将马背上的包裹拿掉一个放到牛背上,那么牛驮的包裹数是马的2倍。”这时牛驮了个包裹,马驮了个包裹。由此你又能得到怎样的方程?

问题2:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?

三:知识新授:
(一)二元一次方程的概念概括:含有,并且所含未知数的的次数都是的方程叫做二元一次方程。
注意:①含有两个未知数;②所含未知数的项的最高次数是一次.。
巩固练习1:
1.下列方程有哪些是二元一次方程,是的打√,不是的打×:
(1),()(2),()
(3),()(4),()
(5),()(6).()

2.如果方程是二元一次方程,那么m=,n=.

(二)二元一次方程组概念的概括:
1.前面第二题中的两个方程中含义相同吗?表示
呢?一样吗?表示,是否同时满足两个方程?
2.二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程.如:
注意:在方程组中的各方程中的同一个字母必须表示同一个对象.
巩固练习2:
(1)同学们各自写出一个二元一次方程组。.

判断下列方程组是否是二元一次方程组:
(1)(2)(3)
(4)(5)(6)

(三)方程的解的概念
1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?

2.适合方程吗?呢?

3.你能找到一组值x,y同时适合方程和吗?

☆适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.
例如,x=6,y=2是方程x+y=8的一个解,记作

通过前面我们知道是方程的一个解,同时又是方程的一个解.
☆二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.
例如,就是二元一次方程组的解。
巩固练习3:
1.下列四组数值中,哪些是二元一次方程的解?()
(A)(B)(C)(D)
2.二元一次方程的解有:
……
3.二元一次方程组的解是()
(A)(B)(C)(D)
4.以为解的二元一次方程组是()
(A)(B)
(C)(D)
5.二元一次方程的正整数解为.

6.如果是的解,那么m=,n=.
7.写出一个以为解的二元一次方程组为.(答案不唯一)
8.方程在自然数范围的解的个数为,整数范围呢?

四:小结:这堂课你掌握的知识;

你还有那些不明白的地方?

文章来源://m.jab88.com/j/59492.html

更多

猜你喜欢

更多

最新更新

更多