一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“九年级数学下册7.2正弦、余弦教案学案(共5套苏科版)”,相信能对大家有所帮助。
7.2正弦、余弦
备课组成员主备审核
教学目标1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、能用函数的观点理解正弦、余弦和正切。
重难点1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、在直角三角形中求出某个锐角的正弦和余弦值。
学习过程旁注与纠错
教学过程:
一、情景创设
1、问题1:如图,小明沿着某斜坡向上行
走了13m后,他的相对位置升高了5m,如果
他沿着该斜坡行走了20m,那么他的相对位
置升高了多少?行走了am呢?
2、问题2:在上述问题中,他在水平方向又分别前进了多远?
二、探索活动
1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________;它的邻边与斜边的比值___________。
(根据是______________________________。)
2、正弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的对边a与斜边c的比
叫做∠A的______,记作________,即:sinA=________=________.
3、余弦的定义
如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与
斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。
(你能写出∠B的正弦、余弦的表达式吗?)试试看____________________.
4、牛刀小试
根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。
5、思考与探索
怎样计算任意一个锐角的正弦值和余弦值呢?
(1)如书P42图7—8,当小明沿着15°的斜坡行走了1个单位长度到P点时,他的位置在竖直方向升高了约0.26个单位长度,在水平方向前进了约0.97个单位长度。
根据正弦、余弦的定义,可以知道:sin15°=0.26,cos15°=0.97
(2)你能根据图形求出sin30°、cos30°吗?sin75°、cos75°呢?
sin30°=_____,cos30°=_____.sin75°=_____,cos75°=_____.
(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。
(4)观察与思考:
从sin15°,sin30°,sin75°的值,你们得到什么结论?
从cos15°,cos30°,cos75°的值,你们得到什么结论?
当锐角α越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?
6、锐角A的正弦、余弦和正切都是∠A的__________。
三、随堂练习
1、如图,在Rt△ABC中,∠C=90°,
AC=12,BC=5,则sinA=_____,
cosA=_____,sinB=_____,cosB=_____。
2、在Rt△ABC中,∠C=90°,AC=1,BC=,
则sinA=_____,cosB=_______,cosA=________,sinB=_______.
3、如图,在Rt△ABC中,∠C=90°,
BC=9a,AC=12a,AB=15a,tanB=________,
cosB=______,sinB=_______
四、请你谈谈本节课有哪些收获?
五、作业书本P431、2
六、拓宽和提高
已知在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且a:b:c=5:12:13,试求最小角的三角函数值。
高港区七年级数学导学案
课题8.1~8.2练习课
姓名班级
学习目标:能灵活计算同底数的幂相乘、幂的乘方、积的乘方。
一.你知道下列各式错在哪里吗?在横线上填上正确的答案.
(1)a3+a3=a6;_______(2)a3a2=a6;______
(3)(x4)4=x8;_________(4)(2a2)3=6a6;_________
(5)(3x2y3)2=9x4y5;_________(6)(-x2)3=x6;_________
(7)(-a6)(-a2)2=a8;____(8)(32a)2=92a2;_________
二.选择题
1.计算的结果是()
A.B.C.D.
2.若,,则等于()
A.5B.6C.8D.9
3.与的正确关系是()
A.相等B.当n为奇数时它们互为相反数,当n为偶数时相等
C.互为相反数D.当n为奇数时相等,当n为偶数时互为相反数
4.的结果是()
A.B.C.D.
5.若m、n、p是正整数,则等于().
A.B.C.D.
6.下列各式中错误的是()
A.B.
C.D.
7.计算的结果为()
A.B.C.D.
8.若,则m等于()
A.2B.4C.6D.8
9.已知是大于1的自然数,则等于()
A.B.C.D.
三.填空题
1.;;;
2.;;.
3.;.
4.;.
5.=;.
6.();.
7.已知,则用含y的代数式表示为.
8.已知,则.
9.已知:,
若(为正整数),则.
四.解答题
1.计算
(1)(1)x3xx2(2)(-x)3x(-x)2
2.先化简,再求值:,其中.
3.已知,求的值.
4.一个氧原子约重g,20000个氧原子共重多少克?
5.已知用含有的代数式表示.
6.已知请用“”把它们按从小到大的顺序连接起来,并说明理由.
7.已知10m=4,10m=5,求103m+2n的值.
8.已知4m=a,8n=b求:的值.
9.已知,求的值.
10.已知,求的值.
二次函数
学生姓名:______班级:
学习目标
1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义;
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
学习重点和难点:
体会二次函数意义,确定二次函数关系式中各项的系数
问题导学:
(一)情景
1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是____________。
2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?
设长方形的长为x米,则宽为____________米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为________________________.
3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?
在这个问题中,地板的费用与____________有关,为____________元,踢脚线的费用与有关,为____________元;其他费用固定不变为____________元,所以总费用y(元)与x(m)之间的函数关系式是________________________。
(二)新知探索
上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?
________________________________________________________________________。
一般地,我们称________________________表示的函数为二次函数。其中___________是自变量,____________函数。
一般地,二次函数中自变量x的取值范围是____________,你能说出上述三个问题中自变量的取值范围吗?
(三)典例分析
例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.
(1)(2)(3)
(4)(5)(6)
(7)(8)
例2.当k为何值时,函数为二次函数?
例3.写出下列各函数关系,并判断它们是什么类型的函数.
⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;
⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;
⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;
⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.
当堂检测:
(1)如图,学校准备将一块长为20m、宽为14m的矩形陆地扩建。如果长、宽都增加xm,则扩建面积S(m2)与x(m)之间的函数关系式为_____________。
(2)如图,把一张长为30cm、宽为20cm的矩形纸片的一角渐趋一个正方形,则剩余扩建面积S(cm2)与所剪正方形边长x(cm)之间的函数关系式为_____________。
(3)圆柱的高14cm,则圆柱的体积V(cm3)与底面半径r之间的函数关系式为.
(4)某化肥厂10月份生产某种化肥200t,如果11、12月的月平均增长率为x,则12月份化肥的产量y(t)与x之间的函数关系式为_____________。
课后作业(1):
1.已知函数是二次函数,则m=_________.
2.已知二次函数,当x=3时,y=-5,当x=-5时,求y=_________.
3.一个长方形的长是宽的1.6倍,这个长方形的面积S与宽x之间函数关系式为_________。
4.如图,用50m长的护栏围成一块靠墙的矩形花园,则花园的面积y(m2)与边长x(m)之间的函数关系式为__________,x的取值范围是___________。
5.如图,在长200m,宽80m的矩形广场内修建等宽的十字形道路,则陆地面积y(m2)与路宽边长x(m)之间的函数关系式为_____________。
6.一个圆柱的高与底面直径相等,它的表面积S与底面半径r之间的函数关系式为.
7.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.
8.一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5m.
⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;
⑵求当上部半圆半径为2m时的截面面积.(π取3.14,结果精确到0.1m2)
课后作业(2):
1.下列函数:(1)y=3x2++1;(2)y=x2+5;(3)y=(x-3)2-x2;(4)y=1+x-,属于二次函数的是(填序号).
2.函数y=(a-b)x2+ax+b是二次函数的条件为.
3.下列函数关系中,满足二次函数关系的是()
A.圆的周长与圆的半径之间的关系B.在弹性限度内,弹簧的长度与所挂物体质量的关系
C.圆柱的高一定时,圆柱的体积与底面半径的关系
D.距离一定时,汽车行驶的速度与时间之间的关系
4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,第一季度营业额y(万元)与x的函数关系式为.
5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式为.
6.某地区原有20个养殖场,平均每个养殖场养奶牛2000头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式.
7.圆的半径为2cm,假设半径增加xcm时,圆的面积增加到y(cm2).
(1)写出y与x之间的函数关系式;
(2)当圆的半径分别增加1cm、时,圆的面积分别增加多少?
(3)当圆的面积为5πcm2时,其半径增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)证明y是x的二次函数;
(2)当k=-2时,写出y与x的函数关系式.
文章来源://m.jab88.com/j/70262.html
更多