88教案网

初三数学图表信息专题总复习

教案课件是每个老师工作中上课需要准备的东西,大家在细心筹备教案课件中。必须要写好了教案课件计划,新的工作才会如鱼得水!你们知道多少范文适合教案课件?为了让您在使用时更加简单方便,下面是小编整理的“初三数学图表信息专题总复习”,希望能对您有所帮助,请收藏。

专题一图表信息
图表信息问题主要考查收集信息和处理信息的能力.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.
这种题型命题广泛,应用知识多,是中考的一种新题型,也是今后命题的热点,考查形式有选择题、填空题、解答题.
考向一表格信息问题
表格信息问题涉及知识点比较广泛,主要有统计、方程(组)、不等式(组)、函数等.解答时关键要根据表格提供的信息,建立相应的数学模型.
【例1】2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.
级数全月应纳税所得额税率
1不超过1500元的部分5%
2超过1500元至4500元的部分10%
3超过4500元至9000元的部分20%
………………
依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.
分析:(1)由于当工资为8000元时,应该纳税,而且应该按照三个级别分别纳税;(2)由于工资为10000元时,要分三种情况进行讨论:①工资小于等于4500元;②工资大于4500元但小于等于7500元;③工资大于7500元小于10000元.
解:(1)李工程师每月纳税:1500×5%+3000×10%+(8000-7500)×20%
=75+300+100=475(元)
(2)设该纳税人的月工薪为x元,则
当x≤4500时,显然纳税金额达不到月工薪的8%.
当4500<x≤7500时,由1500×5%+(x-4500)×10%8%x,
得x>18750,不满足条件.
当7500<x≤10000时,由1500×5%+3000×10%+(x-7500)×20%8%x,
解得x>9375,故9375<x≤10000.
答:若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.
方法归纳本题涉及的数学思想是分类思想.解题时分类讨论是解决问题的关键.
考向二图象信息问题
图象信息问题涉及的知识点主要是函数问题.解答时要注意分析图象中特殊“点”反映的信息.
【例2】在一条直线上依次有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(km),y1,y2与x的函数关系如图所示.
(1)填空:A,C两港口间的距离为__________km,a=__________;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
分析:根据函数图象,容易发现A,B,C三港口位置示意图如下:
图象中点P表示当甲到达B港口后再经过一段时间,甲、乙二船与B港口的距离相等,因此可以有两种解法,一种是利用函数解析式来求交点坐标;另一种则是利用追及问题一般方法来解,设甲船追上乙船时,用了t小时,则可知甲船t小时比乙船多行了30km,由图容易知道甲、乙两船的速度分别是60km/h,30km/h,于是可列方程60t=30t+30轻松求解.对于第(3)小题,应该通过分类讨论来解决问题.
解:(1)1202
(2)由点(3,90)求得,y2=30x.
当x>0.5时,由点(0.5,0),(2,90)求得y1=60x-30.
当y1=y2时,60x-30=30x,解得x=1.
此时y1=y2=30.所以点P的坐标为(1,30).
该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30km.
求点P的坐标的另一种方法:
由图可得,甲的速度为300.5=60(km/h),
乙的速度为903=30(km/h).
则甲追上乙所用的时间为3060-30=1(h).
此时乙船行驶的路程为30×1=30(km).
所以点P的坐标为(1,30).
(3)①当x≤0.5时,由点(0,30),(0.5,0)求得,y1=-60x+30.
依题意,(-60x+30)+30x≤10.
解得x≥23,不合题意.
②当0.5<x≤1时,依题意,30x-(60x-30)≤10.
解得x≥23.所以23≤x≤1.
③当x>1时,依题意,(60x-30)-30x≤10.
解得x≤43.所以1<x≤43.
综上所述,当23≤x≤43时,甲、乙两船可以相互望见.
方法归纳本题涉及数形结合、分类讨论的数学思想.解题的关键是确定三个港口的位置.难点是对P点的含义理解.
考向三图表综合问题
图表综合问题主要分布于统计之中.解题时注意将图表中的信息综合在一起分析解答.
【例3】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10.
七年级学生最喜欢的运动项目人数统计表
项目排球篮球跳绳踢毽其他
人数/人78146
八年级学生最喜欢的运动项目人数统计图
九年级学生最喜欢的运动项目人数统计图
请根据统计表(图)解答下列问题:
(1)本次调查抽取了多少名学生?
(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;
(3)该校共有学生1800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽子,那么学校在“大间操”时至少应提供多少个毽子?
分析:(1)因为三个年级都抽取了相同数量的学生,所以只需算出一个年级抽取的学生数即可;(2)根据(1)补充完整表格与统计图;(3)至少应提供的毽子个数=该校学生总人数乘以最喜欢踢毽人数所占的比例再除以4.
解:(1)10÷20%=50(人),50×3=150(人).
(2)七年级学生最喜欢的运动项目人数统计表
项目排球篮球跳绳踢毽其他
人数/人7815146
八年级学生最喜欢的运动项目人数统计图
九年级学生最喜欢的运动项目人数统计图
“最喜欢跳绳”的学生占抽样总人数的百分比为22%.
(3)14+13+15150×1800÷4=126(个).
方法归纳本题考查了统计图、统计表及根据样本估计总体,也是考查统计知识常见题型.解题时读懂图表并将图表信息综合考虑是关键.
一、选择题
1.某住宅小区6月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是()
A.30吨B.31吨C.32吨D.33吨
2.(2011浙江台州)如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于点M,N,已知点M的坐标为(1,3),点N的纵坐标为-1,根据图象信息可得关于x的方程mx=kx+b的解为()
A.-3,1B.-3,3C.-1,1D.3,-1
二、填空题
3.上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为____________.
4.某村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:
第一年第二年第三年…
应还款(万元)30.5+9×0.4%0.5+8.5×0.4%…
剩余房款(万元)98.58…
若第n年小慧家仍需还款,则第n年应还款__________万元(n>1).
三、解答题
5.2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.
6.如图①,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为yA,yB,yC(单位:升),时间为t(单位:分).开始时,B容器内有水50升,yA,yC与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:
(1)求t=3时,yB的值;
(2)求yB与t的函数关系式,并在图②中画出其函数图象;
(3)求yA∶yB∶yC=2∶3∶4时t的值.
图①图②
7.某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x123456789
价格y1(元/件)560580600620640660680700720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足关系式p2=-0.1x+2.9(10≤x≤12,且x取整数),求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
参考答案
专题提升演练
1.C根据平均数公式可得这5天平均每天的用水量是30+32+36+28+345=32(吨).
2.A把M点的坐标代入y=mx,求得m=3,所以得y=3x,再把y=-1代入y=3x求得x=-3,故关于x的方程mx=kx+b的解为x=-3,或1.
3.431.76cm由图可知,正六边形的对角线长为60cm,则其半径为30cm,边心距为153cm,故所需胶带长度至少为153×12+20×6≈431.76(cm).
4.0.54-0.002n(填0.5+[9-(n-2)×0.5]×0.4%)
关键是要理解付款的方式,第一年还掉3万元后,第二年付0.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n年都是要还0.5万元和剩下的[9-(n-2)0.5]万元的利息,可列式:0.5+[9-(n-2)×0.5]×0.4%,化简可知第n年应还款(0.54-0.002n)万元.
5.解:(1)400×5%=20(克).
答:这份快餐中所含脂肪质量为20克.
(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,
∴x=44,∴4x=176.
答:所含蛋白质的质量为176克.
(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,
∴y≥40,∴380-5y≤180,
∴所含碳水化合物质量的最大值为180克.
解法二:设所含矿物质的质量为n克,则n≥(1-85%-5%)×400,∴n≥40,∴4n≥160,∴400×85%-4n≤180,
∴所含碳水化合物质量的最大值为180克.
6.解:(1)当t=3时,yB=50+4×3=62(升).
(2)根据题意,
当0≤t≤5时,yB=50+4t.
当5<t≤10时,
yB=70-10(t-5)=-10t+120.
yB与t的函数图象如图所示.
图②
(3)根据题意,设yA=2x,yB=3x,yC=4x.
2x+3x+4x=50+60+70.解得x=20.
∴yA=2x=40,yB=3x=60,yC=4x=80.
由图象可知,当yA=40时,5≤t≤10,此时yB=-10t+120,yC=10t+20.
∴-10t+120=60,解得t=6.
10t+20=80,解得t=6.
∴当t=6时,yA∶yB∶yC=2∶3∶4.
7.解:(1)y1与x之间的函数关系式为y1=20x+540,
y2与x之间满足的一次函数关系式为y2=10x+630.
(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)
=(0.1x+1.1)(1000-50-30-20x-540)
=(0.1x+1.1)(380-20x)=-2x2+16x+418
=-2(x-4)2+450,(1≤x≤9,且x取整数)
∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)
=(-0.1x+2.9)(1000-50-30-10x-630)
=(-0.1x+2.9)(290-10x)=(x-29)2,(10≤x≤12,且x取整数)
当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,
∴当x=10时,w最大=361(万元),∵450>361,
∴去年4月份销售该配件的利润最大,最大利润为450万元.
(3)去年12月份销售量为:-0.1×12+2.9=1.7(万件),
今年原材料的价格为:750+60=810(元),
今年人力成本为:50×(1+20%)=60(元),
由题意,得5×[1000(1+a%)-810-60-30]×1.7(1-0.1a%)=1700,
设t=a%,整理,得10t2-99t+10=0,解得t=99±940120,
∵972=9409,962=9216,而9401更接近9409,
∴9401≈97.
∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.
∵1.7(1-0.1a%)≥1,∴a2≈980舍去,∴a≈10.
答:a的整数值为10M.JaB88.com.

精选阅读

中考数学图表信息题复习教案


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《中考数学图表信息题复习教案》,欢迎大家阅读,希望对大家有所帮助。

中考复习专题(八)图表信息

教学目标:

通过解答这类试题,让学生学会观察、挖掘图象(表)所含的信息,提高对所得到的信息进行分类、合成、提取、加工的能力,从而提高学生解决图像信息问题的能力.

教学重、难点:通过训练,提高学生“识图”和“用图”的能力,以及收集、整理和加工信息能力.

教学过程:

一、题型归析

图象(表)信息类试题是题设条件或结论中包含有图象(表)的试题,这类题目的解题条件主要靠图象(表)给出,在解答这类试题的过程中,要仔细观察、挖掘图象(表)所含的信息,并对所得到的信息进行分类、合成、提取、加工,最终求得问题的解答.它主要表现在数轴、直角坐标系、点的坐标、一次函数、二次函数、反比例函数的图象、实用统计图象及部分几何图形等,所提供的形状特征、位置特征、变化趋势等的数学基础知识,很好的考查了学生的观察分析问题的能力.这类题目的图象(表)信息量大,大多数条件不是直接告诉,而是以图象(表)形式映射出来,较为隐蔽,解答它不仅要有扎实的数学基础知识,而且要有较强的读图(表)、识图(表)、分析图(表)的能力.发现挖掘出题目所隐含的条件来达到解题的目的,这类题目在中考中仍有升温的趋势.

解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建立数学模型来解决.

二、例题解析:

题型1?表达信息题

此类题目一般以表格的形式出现,通过表格对数据进行收集、整理,得出与解题相关的信息,从而解决实际应用问题.

【例1】辽南素以“苹果之乡”著称,某乡组织20辆汽车装运A、B、C三种水果42吨到外地销售.按规定每辆车只装同一种苹果,且必须装满.每种苹果不少于2车.

苹果品种ABC

每辆汽车运载量(吨)2.22.12

每吨苹果获利(百元)685

⑴设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;

⑵设此次外销活动的利润为w(百元),求w与x的函数关系式以及最大利润并安排相应的车辆分配方案.

【分析】先从表中得到,每辆车装载苹果的重量,根据苹果总量,与总车数来列方程:

得:2.2x+2.1y+2(20-x-y)=42,整理得0.2x+0.1y=2.所以y=-2x+20(X大于等于2,且小于等于9的整数.(2)W=6X+8y+5(20-X-y)因为y=-2X+20,所以W=6X+8(-2X+20)+5[20-X-(-2X+20)]

整理得W=-5X+160(X大于等于2,且小于等于9的整数).所以当X=2时W有最大值150.

此时用2辆车装A种苹果,用16辆车装运B种苹果,用2辆车装运C种苹果有最大利润,且最大利润为15000元.

题型2?图形、图象信息题

此类题目以图形、图象的形式出现,题型新颖,给出的形式有形象的人物及各自的语言表述,在活泼的氛围里,给出题目具体内容,在考查学生的建模能力,有时候用方程,有时候用不等式

【例2】在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下列问题:

⑴甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是_____;

⑵分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;

⑶当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?

【分析】从图像上可以看出,纵坐标是蜡烛的高度,横坐标是燃烧时间,于纵坐标的交点就是蜡烛的长度,于横坐标的交点就是燃烧尽所用的时间;两图象的交点就是高度相等时的时间.

【思路点拨】要想求出一次函数解析式,关键是要找出图象上的两个关键点的坐标.这样我们就可以用待定系数法求出此函数的解析式了.

三、诊断自测

1.如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→方向匀速运动,最后到达点.运动过程中的面积()随时间(t)变化的图象大致是()

2.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程之间的函数图象大致是()

ABCD

3.如图,AB是半圆O的直径,点P从点O出发,沿O-A-弧AB-B-O的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()

4.为了迎接2014年巴西世界杯,足球协会举办了一次足球赛,其计分方法和奖励方案(每人)如下表:

胜一场平一场负一场

积分310

奖金/元15007000

当比赛进行到每队各比赛12场时,A队(11名队员)共积分20分,并且没有负场.

(1)判断A队胜、平各几场?

(2)若每场比赛每名队员均得出场费500元,那么A队的某一名队员在这12场比赛中所得奖金和出场费的和是多少?

初三数学方案设计与决策专题总复习


专题六方案设计与决策
方案设计与决策在中考中是常见题型.涉及代数方面的有方程(组)、不等式(组)和函数两类;涉及几何方面的有测量、包装等.
考向一利用方程(组)或不等式(组)进行方案设计
生活中许多实际问题需借助方程(组)或不等式(组)的求解,不仅如此还需要对方程(组)或不等式(组)的解,进行有针对性的分析作出方案设计与决策.
【例1】(2011湖南永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,且其单价和为130元.
(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?
(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?
分析:(1)已知篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,且其单价和为130元.可以设它们的单价分别为8x,3x,2x元,列一元一次方程来解决;(2)根据购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,找出羽毛球拍和乒乓球拍与篮球的关系,再根据购买乒乓球拍的数量不超过15副和不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍这两个不等关系列不等式组,求出篮球数量的范围,从而制定出方案.
解:(1)因为篮球、羽毛球拍和乒乓球拍的单价比为8∶3∶2,所以,可以依次设它们的单价分别为8x,3x,2x元,于是,得8x+3x+2x=130,解得x=10.
所以,篮球、羽毛球拍和乒乓球拍的单价分别为80元、30元和20元.
(2)设购买篮球的数量为y个,则购买羽毛球拍的数量为4y副,购买乒乓球拍的数量为(80-y-4y)副,根据题意,得80y+30×4y+20(80-y-4y)≤3000,80-y-4y≤15,①②
由不等式①,得y≤14,由不等式②,得y≥13.
于是,不等式组的解集为13≤y≤14,
因为y取整数,所以y只能取13或14.
因此,一共有两个方案:
方案一,当y=13时,篮球购买13个,羽毛球拍购买52副,乒乓球拍购买15副;
方案二,当y=14时,篮球购买14个,羽毛球拍购买56副,乒乓球拍购买10副.
方法归纳本类型题目主要特点有:(1)当利用不等关系来确定取值范围时,要结合不等式的取值范围来讨论;
(2)当利用方程来确定取值范围时,往往利用解的整数性来解答.
需要说明的是利用方程(组)或不等式(组)进行方案设计常常可借助一次函数的性质进行决策.
考向二利用二次函数进行方案设计
在商业活动或生产活动过程中常常遇到最优化问题.解决此类问题一般可借助二次函数以及二次函数的最大(小)值进行最优方案的选择或设计.
【例2】(2011江津)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB,BC,CD,DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x米.(注:取π=3.14)
(1)试用含x的代数式表示y.
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为w元,求w关于x的函数关系式.
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.
分析:(1)根据圆周长列出关于x,y的等式;(2)①根据三个区域的面积和价格标准,列出关于x的函数关系式;②比较二次函数的最小值与1千万的大小,给出判断;③根据“建设刚好把政府投入的1千万与企业募捐资金64.82万元刚好用完”列出相应的一元二次方程,解出方程的根,根据长宽的要求进行取舍.
解:(1)由题意得πy+πx=628.
∵π=3.14,∴3.14y+3.14x=628.
∴x+y=200.则y=200-x.
(2)①w=428xy+400πy22+400πx22=428x(200-x)+400×3.14×(200-x)24+400×3.14×x24=200x2-40000x+12560000.
②仅靠政府投入的1千万元不能完成该工程的建设任务,其理由如下:
由①知w=200(x-100)2+1.056×107>107,
所以不能.
③由题意,得x≤23y,即x≤23(200-x),解得x≤80.
∴0≤x≤80.
又根据题意,得w=200(x-100)2+1.056×107=107+6.482×105.
整理,得(x-100)2=441,解得x1=79,x2=121(不合题意,舍去).
∴只能取x=79,则y=200-79=121.
∴设计的方案是:AB长为121米,BC长为79米,再分别以各边为直径向外作半圆.
方法归纳利用二次函数解决方案设计问题一般地需要先建立二次函数解析式,然后根据求二次函数最值的方法,即当x=-b2a时,y有最大(小)值4ac-b24a求得最值.最后要结合问题情境确定方案.注意有时确定最值时,需要考虑要在x的取值范围内.
考向三利用几何知识进行方案设计与决策
利用几何知识进行方案设计,不仅要有一定的几何作图能力,而且要能熟练地运用几何的有关性质及全等、相似、图形变换、方程及三角函数的有关知识,并注意充分发挥分类讨论、类比归纳、猜想验证等数学思想方法的作用.
【例3】某校数学研究性学习小组准备作测量旗杆的数学实践活动,来到旗杆下,发现旗杆AB顶端A垂下一段绳子ABC如图1.经研究发现,原来制定的一系列测量方案,在此都不需要.如今只借助垂下的绳子和一根皮尺,在不攀爬旗杆的情况下,测量相关数据,就可以计算出旗杆的高度.
图1
(1)请你给出具体的测量方案,并写出推算旗杆高度的过程;
(2)推测这个数学研究性学习小组原来制定的一系列测量旗杆的方案是什么?
分析:针对该问题所提供的情境知道:(1)旗杆垂直于地面;(2)旗杆AB顶端A垂下一段绳子,即绳子比旗杆长出的部分可度量.因此可联系相关的数学知识利用勾股定理探讨具体测量方案.
解:(1)测量方案设计如下:
①测量绳子比旗杆多出的部分BC=am;
②把绳子ABC拉紧到地面D处如图2,测量B到D的距离BD=bm.
图2
推算过程:设旗杆的高度为xm,则AD是(x+a)m.
在直角△ABD中,根据AB2+BD2=AD2得x2+b2=(x+a)2,x2+b2=x2+a2+2ax,解得x=b2-a22a.
(2)这个数学研究性学习小组原来制定的测量旗杆的方案可能有以下几个:
图3图4
方法归纳关于物体的测量是一个实际问题,因此必须考虑实际环境,结合实际环境,充分运用所学知识制定方案,制定方案时要遵循可操作性强、简单易行原则.第2个问题的测量方案还可有其他的,有兴趣的同学可自行进一步探讨.对于以上2种测量方案的相关计算方法,请同学们自己给出.
一、选择题
1.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密辅地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是()
2.现有球迷150人欲同时租用A,B,C三种型号客车去观看世界杯足球赛,其中A,B,C三种型号客车载客量分别为50人,30人,10人,要求每辆车必须载满,其中A型客车最多租2辆,则球迷们一次性到达赛场的租车方案有()
A.3种B.4种C.5种D.6种
二、填空题
3.某班为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有__________种购买方案.
4.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点,且它们都位于同一对角线上.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有__________.
三、解答题
5.某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元).
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式.
(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.
6.一块洗衣肥皂长、宽、高分别是16cm,6cm,3cm.一箱肥皂30条,请你为雕牌肥皂厂设计一种符合下列要求的包装箱,并使包装箱所用材料最少.
(1)肥皂装箱时,相同的面积要互相对接;
(2)包装箱是一个长方形;
(3)装入肥皂后不留空隙.
7.如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN的步骤.
8.知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具有特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图).
(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.
①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?
②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.
(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.
纸箱示意图纸箱展开图(方案1)
纸箱展开图(方案2)
备用图形
参考答案
专题提升演练
1.B正八边形的内角度数为135°,正三角形一个内角度数为60°,设密铺时,一个接缝点周围有m块正八边形,n块正三角形,则有135m+60n=360,通过试根,没有满足条件的正整数m,n的值使方程成立,因此A选项错误;依次类推,分别把60°换成90°,120°,经过试根,只有90°可以找到满足条件的正整数m,n的值使方程成立,因此,选B.
2.B因为A型车最多租用2辆,所以有两种情况,租用1辆A型车或租用2辆A型车,设租用B型车x辆,C型车y辆.①租用1辆A型车时,50+30x+10y=150,其正整数解为x=1,y=7,x=2,y=4,x=3,y=1;②租用2辆A型车时,100+30x+10y=150,其正整数解为x=1,y=2.
综上所述,共有4种情况.
3.2设购买甲、乙两种运动服分别为x套和y套(x,y为正整数),
依题意,得20x+35y=365,
整理,得4x+7y=73.
y=73-4x7=11-4(x+1)7≥1.
∵x,y为正整数,∴x+1是7的倍数.
∴73-4x≥7,x+1=7k(k为正整数),解得27≤k≤52,
∴整数k=1或2,
∴x=6,y=7,或x=13,y=3.
4.6种从点A1出发,先向下走有三种走法,先向右走也有三种走法,共6种.
5.解:(1)1°当2≤x≤8时,每平方米的售价应为:3000-(8-x)×20=20x+2840(元/平方米).
2°当9≤x≤23时,每平方米的售价应为:3000+(x-8)40=40x+2680(元/平方米).
∴y=20x+2840(2≤x≤8),40x+2680(9≤x≤23),x为正整数.
(2)由(1)知:
1°当2≤x≤8时,小张首付款为(20x+2840)12030%=36(20x+2840)≤36(208+2840)=108000元<120000元.
∴2~8层可任选.
2°当9≤x≤23时,小张首付款为(40x+2680)12030%=36(40x+2680)元.
36(40x+2680)≤120000,解得:x≤493=1613.
∵x为正整数,∴9≤x≤16.
综上得:小张用方案一可以购买二至十六层的任何一层.
(3)若按方案二购买第十六层,则老王要实交房款为:y1=(4016+2680)12092%-60a(元).
若按老王的想法则要交房款为:y2=(4016+2680)12091%(元).
∵y1-y2=3984-60a,
当y1>y2即y1-y2>0时,解得0<a<66.4,此时老王想法正确;
当y1≤y2即y1-y2≤0时,解得a≥66.4,此时老王想法不正确.
6.解:方案一:以16×3的面相对连放三块构成底层,再如此放10层,整个表面积为最小值2616cm2;
方案二:以16×3的面相对连放五块构成底层,再如此放6层,整个表面积仍为最小值2616cm2.
7.解:答案不唯一.
(1)如图,测出飞机在A处对山顶的俯角为α,测出飞机在B处对山顶的俯角为β,测出AB的距离为d,连接AM,BM.
(2)第一步,在Rt△AMN中,tanα=MNAN,∴AN=MNtanα;
第二步,在Rt△BMN中,tanβ=MNBN,∴BN=MNtanβ;
其中AN=d+BN,解得MN=dtanαtanβtanβ-tanα.
8.解:(1)①设这个纸箱底面的长为x,则宽为0.6x.
∵x×0.6x×0.5=0.3,
∴x2=1,解得x=1.
由图示可知,
=[1+2×(0.5+0.5)]×[0.6+2×(0.5+0.3)]=3×2.2=6.6(平方米).
②方案2优惠.由图示
可知,h1h1+1=0.30.3+0.8,解得h1=38.
h2h2+0.8=0.50.5+1,解得h2=25.
∴=12×3+2×38×2.2+2×25=12×308×3=5.625(平方米).
∵5.625平方米<6.6平方米,
∴采用方案2优惠.
(2)设现在设计的纸箱的底面长为x米,宽为y米,
则x+y=0.8,xy=0.3.
即y=0.8-x和y=0.3x,其图象如图所示.
因为两个函数图象无交点,所以要将纸箱的底面周长、底面面积和高都设计为原来的一半,水果商的这种要求不能办到.

初三数学概率初步总复习


老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“初三数学概率初步总复习”,大家不妨来参考。希望您能喜欢!

第30讲概率初步
考标要求考查角度
1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.
2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.
3.能用大量重复试验时的频率估计事件发生的概率.概率是中考命题的必考点,选材多来自游戏、抽奖等生活题材,主要考查必然事件、不可能事件及随机事件的区别,用列表、画树状图法求简单事件发生的概率以及用频率估计概率,题型以填空题、选择题及解答题的形式出现.
知识梳理
一、事件的有关概念
1.必然事件
在现实生活中__________发生的事件称为必然事件.
2.不可能事件
在现实生活中__________发生的事件称为不可能事件.
3.随机事件
在现实生活中,有可能__________,也有可能__________的事件称为随机事件.
4.分类
事件确定事件必然事件不可能事件随机事件
二、用列举法求概率
1.定义
在随机事件中,一件事发生的可能性__________叫做这个事件的概率.
2.适用条件
(1)可能出现的结果为__________多个;
(2)各种结果发生的可能性__________.
3.求法
(1)利用__________或__________的方法列举出所有机会均等的结果;
(2)弄清我们关注的是哪个或哪些结果;
(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.
列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举.
三、利用频率估计概率
1.适用条件
当试验的结果不是有限个或各种结果发生的可能性不相等.
2.方法
进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率.
四、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.
自主测试
1.(2012浙江杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()
A.摸到红球是必然事件B.摸到白球是不可能事件
C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大
2.(2012浙江宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()
A.23B.12C.13D.1
3.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________.
4.有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是__________.
5.(2012福建泉州)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出1子,则提出白子的概率是多少?
(2)随机地从盒中提出1子,不放回再提第二子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
考点一、事件的分类
【例1】下列事件属于必然事件的是()
A.在1个标准大气压下,水加热到100℃沸腾B.明天我市最高气温为56℃
C.中秋节晚上能看到月亮D.下雨后有彩虹
解析:区分事件发生的可能性,应注意积累生活经验和一些基本常识,然后再予以判断.
答案:A
方法总结如何判断事件发生的可能性,我们可以凭直觉判断出有些事件发生的可能性大小,有时要结合日积月累的生活经验,或者经过严谨的推理得到事实等.
触类旁通1下列事件中,为必然事件的是()
A.购买一张彩票,中奖B.打开电视,正在播放广告
C.抛掷一枚硬币,正面向上D.一个袋中只装有5个黑球,从中摸出一个球是黑球
考点二、用列举法求概率
【例2】(2012湖南张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.
(1)请用画树状图或列表的方法表示出所有可能出现的结果;
(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;
(3)求张家界会展区被选中的概率.
分析:根据题意列表或画树状图,求出所有可能出现的结果,再根据每种事件出现的次数,求出对应的概率.
解:(1)用列表法:
或画树状图:
(2)由(1)知,共有12种等可能的结果,第一天参观长沙会展区,第二天参观张家界会展区(记为事件A)有一种可能结果,则P(A)=112.
(3)所有等可能结果中,出现张家界会展区的有6种可能结果,记张家界会展区被选中为事件B,则P(B)=612=12.
方法总结1.用列举法求概率,无论是简单事件还是复杂事件,都先列举所有可能出现的结果,再代入P(A)=mn计算.
2.在用列举法解题时,一定要注意各种情况出现的可能性务必相同,不要出现重复、遗漏等现象.
3.判断游戏的公平性,在相同的条件下,应考虑随机事件发生的可能性是否相同,可能性大的获胜机会就大.
触类旁通2甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
考点三、频率与概率
【例3】小明在学习了统计与概率的知识后,做了投掷骰子的试验,小明共做了100次试验,试验的结果如下:
朝上的点数123456
出现的次数171315232012
(1)试求“4点朝上”和“5点朝上”的频率;
(2)由于“4点朝上”的频率最大,能不能说一次试验中“4点朝上”的概率最大?为什么?
解:(1)“4点朝上”出现的频率是23100=0.23.
“5点朝上”出现的频率是20100=0.20.
(2)不能这样说,因为“4点朝上”的频率最大并不能说明“4点朝上”这一事件发生的概率最大,只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.
方法总结在大量重复试验中,随着统计数据的增大,频率稳定在某个常数左右,将该常数作为概率的估计值,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性,二者并不完全相同.
触类旁通3某质检员从一大批种子中抽取若干批,在同一条件下进行发芽试验,有关数据如下:
种子粒数50100200500100030005000
发芽种子粒数459218445891427324556
发芽频率
(1)计算各批种子发芽频率,填入上表.
(2)根据频率的稳定性估计种子的发芽概率.
考点四、概率的应用
【例4】(2011云南昆明)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1,2,3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.
(1)请用画树状图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果.
(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜;两次抽出的纸牌数字之和为偶数,则小明获胜.这个游戏公平吗?为什么?
解:(1)列表如下:
123
1(1,1)(1,2)(1,3)
2(2,1)(2,2)(2,3)
3(3,1)(3,2)(3,3)
或画树状图如下:
(2)可能出现的数字之和分别为2,3,4,3,4,5,4,5,6共9个,它们出现的可能性相同.其中奇数共4个,偶数共5个.
∴P(小昆获胜)=49,P(小明获胜)=59.
∵49≠59,∴游戏不公平.
方法总结游戏公平与否,关键是根据规则算出各自的概率,概率均等则游戏公平,否则就不公平.设计游戏规则时,应先根据题意求出随机事件的各种可能出现的情况的概率,再根据其中概率相等时的情况设计公平的游戏规则,也可根据概率不相等时的情况设计公平的游戏规则.
触类旁通4(1)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()
A.14B.12C.34D.1
(2)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗庙、烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是()
A.19B.13C.23D.29
1.(2012湖南张家界)下列不是必然事件的是()
A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边
C.面积相等的两个三角形全等D.三角形内心到三边距离相等
2.(2012湖南湘潭)“湘潭是我家,爱护靠大家.”自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()
A.13B.23C.49D.59
3.(2012湖南长沙)任意抛掷一枚硬币,则“正面朝上”是__________事件.
4.(2012湖南娄底)在-1,0,13,1,2,3中任取一个数,取到无理数的概率是__________.
5.(2012湖南怀化)投掷一枚普通的正方体骰子24次,
(1)你认为下列四种说法哪几种是正确的?
①出现1点的概率等于出现3点的概率;
②投掷24次,2点一定会出现4次;
③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;
④连续投掷6次,出现的点数之和不可能等于37.
(2)求出现5点的概率.
(3)出现6点大约有多少次?
1.某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()
A.12B.13C.14D.16
2.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()
A.2B.4C.12D.16
3.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()
A.连续抛一枚均匀硬币2次必有1次正面朝上
B.连续抛一枚均匀硬币10次都可能正面朝上
C.大量反复抛一枚均匀硬币,平均100次出现正面朝上50次
D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
4.在x22xyy2的空格中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()
A.1B.34C.12D.14
5.在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为__________.(注:π取3)
6.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是__________.
7.如图所示,一个圆形转盘被等分为八个扇形区域,上面分别标有数字1,2,3,4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)__________P(4).(填“>”、“<”或“=”)
8.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸到的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因;
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.

参考答案
【知识梳理】
一、1.一定会2.一定不会3.发生不发生
二、1.大小
2.(1)有限(2)相等
3.(1)列表画树状图
三、2.常数常数
导学必备知识
自主测试
1.D摸到红球是随机事件,故选项A错误;
摸到白球是随机事件,故选项B错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项C错误;
根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故选项D正确.
2.A因为根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是2÷3=23.
3.600
4.14因为长度为2cm,3cm,4cm,7cm的四条线段,从中任取三条线段共有2,3,4;3,4,7;2,4,7;3,4,7四种情况,而能组成三角形的有2,3,4,共有1种情况,
所以能组成三角形的概率是14.
5.解:(1)P(白子)=14.
(2)方法一:所有等可能的结果,画树状图如下:
∴P(一黑一白)=612=12.
方法二:所有等可能的结果,列表如下.
∴P(一黑一白)=612=12.
探究考点方法
触类旁通1.D
触类旁通2.解:(1)列表法如下:
甲乙丙丁
甲乙甲丙甲丁甲
乙甲乙丙乙丁乙
丙甲丙乙丙丁丙
丁甲丁乙丁丙丁
所有可能出现的情况有12种,其中甲、乙两位同学组合的情况有两种,所以P=212=16.
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,共有3种情况,选中乙的情况有一种,所以P(恰好选中乙同学)=13.
触类旁通3.解:(1)通过计算,发芽频率从左到右依次为:0.9,0.92,0.92,0.916,0.914,0.911,0.911.
(2)由(1)知,发芽频率逐渐稳定在0.911,因此可以估计种子的发芽概率为0.911.
触类旁通4.(1)B在四个图案中,是中心对称图形的图案有2个,所以正面图案是中心对称图形的概率为12.
(2)A列树形图可知共有9种等可能的结果,所以上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是19.
品鉴经典考题
1.C2.D1-13+19=59.3.随机
4.13这六个数中,无理数有2,3,∴取到无理数的概率是26=13.
5.解:(1)①④正确;
(2)出现5点的概率为16;
(3)因为出现6点的概率为16,故投掷骰子24次出现6点大约有24×16=4(次).
研习预测试题
1.D2.B3.A4.C5.236.137.>
8.解:(1)∵P(小明胜)=35,P(妹妹胜)=25,
∴P(小明胜)≠P(妹妹胜).
∴这个办法不公平.
(2)当x>3时对小明有利,当x<3时对妹妹有利,
当x=3时是公平的.

文章来源:http://m.jab88.com/j/68516.html

更多

最新更新

更多