88教案网

九年级数学《事件的可能性》知识点复习

做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《九年级数学《事件的可能性》知识点复习》,希望对您的工作和生活有所帮助。

九年级数学《事件的可能性》知识点复习

知识点

随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。

一、概率的频率定义

随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

二、概率的严格定义

设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:

(1)非负性:对于每一个事件A,有P(A)≥0;

(2)规范性:对于必然事件S,有P(S)=1;

(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

三、概率的古典定义

如果一个试验满足两条:

(1)试验只有有限个基本结果;

(2)试验的每个基本结果出现的可能性是一样的。

这样的试验,成为古典试验。

对于古典试验中的事件A,它的概率定义为:

P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。

相关知识

九年级数学上4.1等可能性导学案


4.1等可能性
班级______学号_____姓名___________
学习目标:
1.会列出一些类型的随机试验的所有可能结果(基本事件);
2.理解等可能的意义,会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性.
学习重点:理解等可能概念的意义,会根据随机试验结果的对称性或均衡性判断试验结果是否具有等可能性.
学习难点:理解等可能概念的意义,会列出一些类型的随机试验的所有可能结果.
学习过程:
学前准备:
1.(1)什么样的事件是随机事件?举例说明.

(2)我们学过哪几种事件呢?

(3)如何表示事件发生可能性大小?
2.小明抛掷一枚硬币.
(1)落地后有多少种可能的结果?它们都是随机事件吗?

(2)每次试验有几个结果出现?每次试验有没有其它结果出现?

(3)每个结果出现机会均等吗?为什么?

小结:在上面的试验中,所有可能发生的结果有________个,它们都是事件,每次试验有且只有其中______个结果出现。根据随机试验结果的______性,每个结果出现的机会是均等的,那么,这两个事件的发生是.
合作探究:
活动1:一只不透明的袋子中装有10个小球,分别标有0、1、2、3……9这10个号码,这些球除号码外都相同,搅匀后从袋中任意取出一个球.
(1)有多少种可能的结果?它们都是随机事件吗?

(2)每次试验有几个结果出现?有无第二个结果出现?

(3)每次结果出现的机会均等吗?为什么?

结论:等可能概念:.
练习:在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个盒子中搅匀,从中任意抽出1支签,会出现哪些可能的结果?这些结果的出现是等可能的吗?为什么?

活动2:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到红球和摸到白球是等可能的吗?为什么?
小明同学说:摸出的球不是白球就是红球,所以摸出白球和摸出红球这两个事件是等可能的.
你认为他的说法正确吗?如果不正确,哪一种可能性大?为什么?

方法小结:.
活动3:例题讲解
例1、从一名男生和两名女生中任选一名学生,帮助学校图书馆整理图书,会有哪些可能的结果?这些结果是等可能的吗?

例2、A、B两地之间的电缆有一处断点,断点出现在电缆的各个位置的可能性相同吗?

巩固练习:
抛掷一个质地均匀的正十二面体,12个面上分别标有1-12这12个整数,抛掷这个正十二面体1次.
(1)朝上一面的数会有哪些?它们发生的可能性相同吗?

(2)朝上一面的数是奇数与朝上一面的数是偶数,发生的可能性相同吗?

(3)朝上一面的数是4的倍数与朝上一面的数是6的倍数,发生的可能性相同吗?

拓展提升:
在一个口袋中装入6个球,这些球除颜色外都相同,搅匀后从中摸出一个球,要使得摸到白球的可能性比摸到红球的可能性大,口袋中球的颜色应是怎样的?

当堂检测:
1.掷一枚质地均匀的正方体骰子,可能出现那些结果?他们是等可能的吗?

2.向一个圆面内随机地投一点,该点的位置会有多少种可能结果?它们是等可能的吗?

3.在一个口袋中装有6个白球和3个红球,这些球除颜色外都相同,搅匀后从中摸出一个球,则摸到球的可能性较大.
课堂小结:通过这节课你学到了什么?你还想进一步研究什么?
作业布置:习题4.1第1,3.

可能性和概率


老师在新授课程时,一般会准备教案课件,大家在用心的考虑自己的教案课件。写好教案课件工作计划,才能使接下来的工作更加有序!你们清楚有哪些教案课件范文呢?下面是小编为大家整理的“可能性和概率”,希望能为您提供更多的参考。

课题3.3可能性与概率授课时间
学习目标1、了解概率的意义。
2、了解等可能性事件的概率公式。
3、会用列举法(包括列表、画树状图)计算简单事件发生的概率。
4、进一步认识游戏规则的公平性。

学习重难点重点:概率的概念及其表示
难点:两次事件发生总数的计算

自学过程设计教学过程设计
试一试:
(1)请你复述概率大的意义
(2)等可能事件发生的概率公式是?
练习:抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是偶数的可能性与朝上一面的数是1的可能性哪一个大?

做一做:(1)回答教科书74~75页的四个问题。(做一做及课内练习)
(2)如图所示的是一个红、黄两色各占一半的转盘,让转盘自由转动2次,指针2次都落在红色区域的概率是多少?一次落在红色区域,另一次落在黄色区域的概率是多少?

想一想:
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________________________________________________________________________________________________________________________预习检测
1.请回答以下3个事件发生的概率分别是多少
(1)小明百分之百可以在一分时间内打字50个以上.
(2)小华不可能在7秒内跑完100米.
(3)通过随机摇奖,要把一份奖品奖给10个人中的一个.

探究新知
概率的定义:
事件发生的可能性的大小也称为事件发生的概率.
概率的表示:
事件发生的概率一般用P表示,事件A发生的概率记为P(A)
等可能性事件的概率公式:

适用条件:事件发生的各种可能结果的可能性都相等.
应用探究
如图是一个红、黄两色各占一半的转盘,
让转盘自由转动2次,指针2次都落在红色区域
的概率是多少?一次落在红色区域,另一次落在
黄色区域的概率是多少?

2、一个布袋里装有8个红球和2个黑球,它们除颜色外都相同.求下列事件发生的概率:
(1)从中摸出一个球,是白球;
(2)从中摸出一个球,不是白球;
(3)从中摸出一个球,是红球;
(4)从中摸出一个球,是黑球.
如果摸两次球,第一次摸出球后放回摇匀,再摸第
二次球,问两次都是红球的概率是多少?
如果不放回,那么两次都是红球的概率是多少?

3、有10张卡片,每张卡片上分别写有不同的从1到10的一个自然数。从中任意抽出一张卡片,请计算下列事件发生的概率:
(1)事件A:卡片上的数是2的倍数;
(2)事件B:卡片上的数是3的倍数;
(3)事件C:卡片上的数是2的倍数或3的倍数;
(4)事件D:卡片上的数既是2的倍数又是3的倍数;
(5)事件E:卡片上的数是2的倍数但不是3的倍数。

拓展延伸
1、袋中有红球3个和白球若干(球除颜色外均相同),问当白球多少个时,摸到红球的概率为1/5
2、一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的。拿出一颗红色弹珠的概率是35%,拿出一颗蓝色弹珠的概率是25%。桶里每种颜色的弹珠各有多少?

堂堂清
1.连续两次抛掷一枚均匀的硬币,正面朝上的概率是________;
2.一个布袋里装有7个白球和3个红球,它们除颜色外其它都相同.从中任意摸一球是红球的概率是______;
3.一家电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”4名,小惠打通了一次热线电话,那么小惠成为“幸运观众”的概率为_______。
4.从一副扑克牌(除去大小王)中任抽一张。
P(抽到红心)=;
P(抽到黑桃)=;
P(抽到红心3)=;
P(抽到5)=。

5、某事件发生的可能性如下:⑴极有可能,但不一定发生;⑵发生与不发生的可能性一样;⑶发生可能性极少;⑷不可能发生。试将它们与下面的数值联系起来:
A、0.1%B、50%
C、0D、99.99%
6、在下列说法中,不正确的为()
A、不可能事件一定不会发生;
B、必然事件一定会发生;
C、抛掷两枚同样大小的硬币,两枚都出现反面的事件是一个不确定事件;
D、抛掷两颗各面均匀的骰子,其点数之和大于2是一个必然事件。
7、由A村到B村的道路有3条,由B村到
C村的道路有2条

问(1)从A村经B村到C村共有多少种不同的
走法?
(2)某人从中任选一条路线,选中“先经A---B
北路,再经B---C南路”的概率是多少?

教后反思这节课是本章学习的核心,也是以后学习概率的基础,所以这节课的学习是很重要的。尤其是学生要理解的是等可能事件发生的概率的公式,及其应用。当然学生刚接触这里的题,所以开始就简单一点,之后的复习中再把难度提高一点。

九年级数学上册《简单事件的概率》知识点复习


九年级数学上册《简单事件的概率》知识点复习

一、事件的可能性

随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。

二、简单事件的概率

1.必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;

2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;

3.确定事件:必然事件和不可能事件都是确定的;

4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

三、用频率估计概率

1、利用频率估计概率

在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

四、概率的简单应用

1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

2.对于作何一个随机事件都有一个固定的概率客观存在。

3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

(1)尽量经历反复实验的过程,不能想当然的作出判断;

(2)做实验时应当在相同条件下进行;

(3)实验的次数要足够多,不能太少;

文章来源:http://m.jab88.com/j/68514.html

更多

最新更新

更多