88教案网

等可能性事件的概率-

一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够在课堂积极的参与互动,帮助高中教师缓解教学的压力,提高教学质量。高中教案的内容具体要怎样写呢?以下是小编为大家收集的“等可能性事件的概率-”大家不妨来参考。希望您能喜欢!

课题:等可能性事件的概率教材:人民教育出版社的全日制普通高级中学教科书(试验修订本.必修)《数学》第二册(下B)第十一章概率第一节(第二课时)教学目标;

(1)知识与技能目标:了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率。

(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事件的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。

(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事件的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。

教学重点:

等可能性事件的概率的意义及其求法。

教学难点:

等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。

教学方法:

启发式探索法

教学手段:

计算机辅助教学、实物展示台

教具准备:

转盘一个

教学过程:

附:课前兴趣阅读:

生活中的数学

1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性多大?

2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你认为公平吗?

同学们,要想解决上面的问题,就让我们继续学习概率吧!

一、复习旧知:

抛掷一枚均匀硬币,

(1)出现正面向上;

(2)出现正面向上或反面向上;

(3)出现正面向上且反面向上.

各是什么事件?概率分别是多少?(学生回答)

(1)随机事件,概率是1/2

(2)必然事件,概率是1

(3)不可能事件,概率是0

二、设置情境,引入新课:

同学们,你们参加过商场抽奖吗?

我们美丽的无为的大商场即将在五一黄金周进行有奖销售活动(拿出转盘,一面是把转盘均匀6份,一面是不均匀的6份)

出示不均匀的一面

情境一:

无为商之都五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:

1:电冰箱一台2:可口可乐一听3:色拉油250ml

4:谢谢光顾5:洗衣粉一袋6:光明酸奶500ml

你希望抽到什么?抽到电冰箱的可能性与抽到洗衣粉一袋相同吗?

出示均分6份一面

情境二:

无为百货大楼五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:

1:雪碧250ml一听2:可口可乐一听3:洗衣粉一袋

4:光明酸奶125ml5:康师傅方便面一盒

6:娃哈哈矿泉水一瓶

现在你觉得抽到可口可乐一听与洗衣粉一袋的可能性相同吗?抽到1的可能性是多少呢?你是怎么的到的呢?

求一个随机事件的概率的基本方法是通过大量的重复试验;那么能否不进行大量重复试验,只通过一次试验中可能出现的结果求出其概率呢?

这就是今天我们要学习的等可能性事件的概率(板书课题)

三、逐层探索,构建新知:

问题1:掷一枚均匀的硬币,可能出现的结果有几种?

它们的概率分别为多少?

正面向上反面向上

1/21/2

问题2:在情境2摇奖中,指针指向的数字可能有几种?它们的概率分别为多少?

123456

1/61/61/61/61/61/6

这里是怎么得到概率的值的?

引导发现:

1、分析一次试验可能出现的结果n个

2、每个结果出现的可能性是相同的

(演示转盘的两面帮助学生理解每个结果出现的可能性是相同的这一前提)

问题3:在问题2中指针指向的数字是3的倍数的概率为多少呢?是偶数的概率是多少?(学生回答)

1/21/3

(强调等可能性)

引入公式:

基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。

如果一次试验由n个基本事件组成,而且所有的基本事件出现的可能性都相等,那么每一个基本事件的概率都是1/n。

等可能性事件的概率:

如果某个事件A包含的结果有m个,那么事件A的概率

P(A)=m/n

在一次试验中,等可能出现的n个结果组成一个集合I,

包含m个结果的事件A对应于I的含有m个元素的

Card(A)

P(A)=———————=m/n

Card(I)

跟踪练习:1、请同学们自己设计一个有关求等可能性事件的问题。

2.先后抛掷2枚均匀的硬币

(1)一共可能出现多少种不同的结果?

(2)出现“1枚正面、1枚反面”的结果有多少种。

(3)出现“1枚正面、1枚反面”的概率有多少种。

(4)出现“1枚正面、1面反面”的概率是1/3,对吗?

四、师生共做,循环上升:

例1、一个口袋内装有大小相等的1个白色和已编有

不同号码的3个黑球,从中摸出2个球。

(1)共有多少种不同的结果?

(2)摸出2个黑球有多少种不同的结果?

(3)摸出2个黑球的概率是多少?(学生举手回答或个别提问,注意从组合知识和集合两个角度分析求解)

I

白黑1

白黑2

白黑3

黑1黑2

黑2黑3

黑1黑3

A
例题2:将骰子先后抛掷2次,计算:

(1)一共有多少种不同的结果?

(2)其中向上的数之和是5的结果有多少种?

(3)向上的数之和是5的概率是多少?

解:(1)将骰子抛掷1次,它落地时向上的数有1,2,3,4,

5,6这6种结果。根据分步计数原理,先后将这种玩具抛掷2次,

一共有

6×6=36

种不同的结果。

答:先后抛掷骰子2次,一共有36种不同的结果。

(2)在上面所有结果中,向上的数之和是5的结果有

(1,4),(2,3),(3,2),(4,1)

4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上

的数。上面的结果可用下图表示

答:在2次抛掷中,向上的数之和为5的结果有4种

(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可

能出现的。其中向上的数之和是5的结果(记为事件A)有4种,因此

所求的概率

6

7

8

9

10

11

12

5

6

7

8

9

10

11

4

5

6

7

8

9

10

3

4

5

6

7

8

9

2

3

4

5

6

7

8

1

2

3

4

5

6

7

1

2

3

4

5

6

第一次抛掷后向上的数

答:抛掷骰子次,向上的数之和为5的概率是1/9

变式练习:

在例2中,向上的数之积为6的概率是多少?

模拟预案:

小明说,抛掷两枚骰子,向上一面数字之和最小为2,最大为12,共有11种不同的结果,则向上一面的数字之和为5的概率是1/11,对吗?为什么?

五.课堂小结:

通过这节课的学习,同学们能不能归纳梳理本节课的主要内容?(学生自主小结)

1、等件可能性事件的特征:

a、一次试验中有可能出现的结果是有限的;

b、每一结果出现的可能性相等。

2、求等可能性事件概率的步骤:

(1)审清题意,判断本试验是否为等可能性事件.

(2)计算所有基本事件的总结果数n

(3)计算事件A所包含的结果数m.

(4)计算P(A)=m/n

六.课后作业:

1、必做题:P132习题11.12,3

2、选做题:P132习题11.18

结束语:同学们,上课之前大家看到了概率在生活中的应用,譬如,一年365天计算,我们班某一位同学在今天过生日的概率是多少?根据等可能性事件的概率计算应该是1/365,那么某两位同学在今天生日的概率是多少?我们班至少有两位同学在今天生日的概率又是多少?等等问题,大家想不想知道,这些问题有待于我们以后进一步概率的学习。

七、说明:

为了贯彻新课程理念,这次评比我选取的内容是人教版高中数学第二册(下B)第十一章概率中的一节《等可能性事件的概率》,概率是新课程改革新增内容,与社会生活密切相关,在生产生活中应用及其广泛,符合新课程理念倡导的教育观。

本节课在数学教材的选取上,力求贴近生活实际,如抽奖,摸球游戏等,并且就地取材,创设学生熟悉的感兴趣的问题情境,使学生能在轻松、愉快的教学情境中学习有用的数学,同时也能运用数学知识来分析问题和解决问题。

教案的设计“以人为本,以学定教”,教师始终扮演的是组织者、引导者、参与者的角色,通过问题教学法,变“教的课堂”为“学的课堂”,学生成为课堂学习真正的主人。

通过布置分层练习,面对全体学生,使不同的人在数学上有不同的发展,让不同的学生在数学学习上都能成功;倡导合作式学习,通过学生小组合作设计问题、小组交流解决问题的方式,提高学生合作学习、主动探究的能力,而且大大促进了学生对知识的理解和灵活运用。

本节内容是随机性的思维方法,学生的辨证思维不成熟,可能存在理解不到位的现象,反思这一点,如何加以改进,这是在后续教学中需要思考的问题。

延伸阅读

《随机事件的概率》教案


《随机事件的概率》教案
一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体课件

四、教学过程

(一)情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。(二)探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义
问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1.频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2.试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

概率的性质

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

(三)课堂练习,巩固提高

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()

A.必然事件B.随机事件

C.不可能事件D.无法确定

2.下列说法正确的是()

A.任一事件的概率总在(0.1)内

B.不可能事件的概率不一定为0

C.必然事件的概率一定为1

D.以上均不对

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?4.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

(四)课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

随机现象和随机事件的概率


总课题概率总课时第21课时
分课题随机现象和随机事件的概率分课时第1课时
教学目标了解必然事件,不可能事件及随机事件的意义;了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义及概率与频率的区别;通过对概率的学习,使学生对对立统一的辩证规律有进一步认识.
重点难点必然事件、不可能事件,随机事件的含义;根据统计定义计算概率的方法.
引入新课
1.观察下列现象:
(1)在标准大气压下,把水加热到100°C,沸腾;(2)导体通电,发热;
(3)实心铁块丢入水中,铁块浮起;(4)同性电荷,互相吸引;(5)买一张福到彩票,中奖;(6)掷一枚硬币,正面向上;
这些现象各有什么特点?

2.(1)确定性现象与随机现象:

(2)试验与事件:

(3)事件的分类与事件的符号表示:

3.概率的定义及频率与概率的关系:

4.求事件的概率的基本方法:

注意:概率的取值范围是__________________________________.
例题剖析
例1试判断下列事件是随机事件、必然事件还是不可能事件.
(1)我国东南沿海某地明年将次受到热带气旋的侵袭;
(2)若为实数,则;
(3)某人开车通过个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.

例2下面表中列出10次抛掷硬币的试验结果,为每次试验抛掷硬币的次数,
为硬币正面向上的次数,计算每次试验中“正面向上”这一事件的频
率,并考查其概率.
试验序号抛掷的次数
正面向上的次数
“正面向上”出现的频率
1500251
2500249
3500256
4500253
5500251
6500246
7500244
8500258
9500262
10500247

例3某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
时间1999年2000年2001年2002年
出生婴儿数21840230702009419982
出生男婴数11453120311029710242
(1)试计算男婴各年出生的频率(精确到);
(2)该市男婴出生的概率约为多少?
巩固练习
1.某班进行一次数学测验,其中及格的人数为47人,不及格的人数为3人,
请据此列出一些不可能事件,必然事件,随机事件.

2.在10个学生中,男生有x个,现从中任选6人去参加某项活动.
①至少有1个女生;②5个男生,1个女生;③3个男生,3个女生.
当x为何值时,使得①为必然事件;②为不可能事件;③为随机事件.

3.某医院治疗一种疾病治愈率为%,如果前个病人都没有治愈,那么第十个病人
就一定能治愈吗?

课堂小结
随机现象和随机事件的概率的简单计算.
课后训练
班级:高二()班姓名:____________
一基础题
1.从15名学生中(其中男生10人,女生5人),任意选出6人的必然事件是()
A.6人都是男生;B.至少有1人是女生;
C.6人都是女生;D.至少有1人是男生.

2.从1,2,3,…,10这10个数字中,任取3个数字,那么“这3个数字之和小于27”这一事件是()
A.必然事件B.不可能事件C.随机事件D.以上选项均不正确

3.给出下列事件:
①对非零向量,,若,则⊥;
②直线()与函数的图象有两个不同的交点;
③若,,则;
④过空间任意三点,有且只有一个平面.
在以上事件中随机事的个数是()
A.1B.2C.3D.4

4.抛掷一枚硬币,连续5次正面向上,则有()
A.抛掷一枚硬币,出现正面向上,概率为1;
B.第6次出现正面向上的概率大于;
C.第6次出现正面向上的概率等于;
D.第6次出现正面向上的概率小于.
5.设某种产品的合格率约为99%,估算10000件该产品中次品的件数可能是______件.

6.对某批种子的发芽情况统计,在统计的5000粒种子中共有4520粒发芽,
则“种子发芽”事件的频率为______________.

二提高题
7.已知,,给出事件:.
(1)当为必然事件时,求的取值范围;
(2)当为不可能事件时,求的取值范围.

三能力题
8.某射击运动负进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数100120150100150160150
击中飞碟数819512382119127121
击中飞碟频率
(1)将各次记录击中飞碟的频率填入表中.
(2)这个运动员击中飞碟的概率约为多少?

相互独立事件同时发生的概率


作为优秀的教学工作者,在教学时能够胸有成竹,准备好一份优秀的教案往往是必不可少的。教案可以让学生更容易听懂所讲的内容,帮助教师营造一个良好的教学氛围。写好一份优质的教案要怎么做呢?下面是小编为大家整理的“相互独立事件同时发生的概率”,欢迎阅读,希望您能够喜欢并分享!

【精品】高二数学11.3相互独立事件同时发生的概率(备课资料)大纲人教版必修
一、参考例题
[例1]一袋中有2个白球和2个黑球,把“从中任意摸出1个球,得到白球”记作事件A,把“从剩下的3个球中任意摸出1个球,得到白球”记作事件B,那么,当事件A发生时,事件B的概率是多少?当事件A不发生时,事件B的概率又是多少?这里事件A与B能否相互独立?
分析:由于不论事件A发生与否,事件B都是等可能性事件,利用等可能性事件的概率计算公式可得当A发生时,P(B)的值和当A不发生时,P(B)的值.
解:∵当事件A发生时,P(B)=,
当事件A不发生(即第一个取到的是黑球)时,P(B)=.
∴不论事件A发生与否,对事件B发生的概率有影响.所以事件A与B不是相互独立事件.
[例2]设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.9、0.8,求:
(1)目标恰好被甲击中的概率;
(2)目标被击中的概率.
分析:设事件A:“甲击中目标”,事件B:“乙击中目标”,由于事件A与B是相互独立的,故A与、与B也是相互独立的.
解:设事件A:“甲击中目标”,事件B:“乙击中目标”.
∵甲、乙两射手独立射击,
∴事件A与B是相互独立的.
∴事件A与、与B都是相互独立的.
(1)∵目标恰好被甲击中,即A发生,
∵P(A)=P(A)P()=0.9×0.2=0.18,
∴目标恰好被甲击中概率为0.18.
(2)∵目标被击中,即甲、乙两人至少有一人击中目标,即事件A或B或AB发生,
又∵事件A、B、AB彼此互斥.
∴目标被击中的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=0.9×0.2+0.1×0.9+0.9×0.8
=0.98.
[例3]甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?
分析:设从甲袋中任取一个球,事件A:“取得白球”,故此时事件为“取得红球”.
设从乙袋中任取一个球,事件B:“取得白球”,故此时事件为“取得红球”.
由于事件A与B是相互独立的,因此事件与也相互独立.
由于事件“从每袋中任取一个球,取得同色”的发生即为事件AB或发生.
解:设从甲袋中任取一个球,事件A:“取得白球”,则此时事件:“取得红球”,从乙袋中任取一个球,取得同色球的概率为
P(AB+)=P(AB)+P()
=P(A)P(B)+P()P()
=.
[例4]甲、乙两个同时报考某一大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否录取互不影响,求:
(1)甲、乙两人都被录取的概率;
(2)甲、乙两人都不被录取的概率;
(3)其中至少一个被录取的概率;
分析:设事件A:“甲被录取”,事件B:“乙被录取”.
因为,两人是否录取相互不影响,故事件A与B相互独立.因此与,A与,与B都是相互独立事件.
解:设事件A“甲被录取”,事件B“乙被录取”.
∵两人录取互不影响,
∴事件A与B是相互独立事件.
∴事件与,A与,与B都是相互独立事件.
(1)∵甲、乙二人都被录取,即事件(AB)发生,
∴甲、乙二人都被录取的概率
P(AB)=P(A)P(B)=0.6×0.7=0.42.
(2)∵甲、乙二人都不被录取,即事件()发生,
∴甲、乙两人都不被录取的概率
P()=P()P()
=[1-P(A)][1-P(B)]
=0.4×0.3=0.12.
(3)∵其中至少一人被录取,即事件(A)或(B)或(AB)发生,而事件(A),(,B),(AB)彼此互斥,
∴其中至少一人被录取的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=P(A)[1-P(B)]+[1-P(A)]P(B)+P(A)P(B)
=P(A)+P(B)-P(A)P(B)
=0.6+0.7-0.42=0.88.
二、参考练习
1.选择题
(1)坛中仅有黑、白两种颜色大小相同的球,从中进行有放回的摸球,用A1表示第一次摸得白球,A2表示第二次摸得白球,则A1与是
A.相互独立事件B.不相互独立事件
C.互斥事件D.对立事件
答案:A
(2)若事件A与B相互独立,则下列不相互独立的事件为
A.A与B.和
C.B与D.B与A
答案:C
(3)电灯泡使用时间在1000小时以上的概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是
A.0.128B.0.096
C.0.104D.0.384
答案:B
(4)某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是
A.B.
C.D.
答案:A
2.填空题
(1)设P(A)=0.3,P(B)=0.6,事件A与B是相互独立事件,则P(B)=________.
答案:0.42
(2)棉子的发芽率为0.9,发育为壮苗的概率为0.6.
①每穴播两粒,此穴缺苗的概率为________;此穴无壮苗的概率为________.
②每穴播三粒,此穴有苗的概率为________;此穴有壮苗的概率为________.
答案:①0.010.16
②1-(0.1)31-(1-0.6)3
(3)一个工人生产了四个零件,设事件Ak:“新生产的零件第k个是正品”(k=1,2,3,4),试用P(Ak)表示下列事件的概率(设事件Ak彼此相互独立).
①没有一个产品是次品:________;
②至少有一个产品是次品:________;
③至多有一个产品是次品:________.
答案:①P(A1)P(A2)P(A3)P(A4)
②1-P(A1A2A3A4)
③P(A2A3A4)+P(A1A3A4)+P(A1A2A4)+P(A1A2A3)
3.解答题
(1)对飞机进行三次独立射击,第一次、第二次、第三次的命中率分别为0.4、0.5、0.7,求:
①飞机被击中一次、二次、三次的概率;
②飞机一次也没有被击中的概率.
解:①飞机被击中一次的概率
P1=0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7=0.36,
飞机被击中二次的概率
P2=0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7=0.41,
飞机被击中三次的概率
P3=0.4×0.5×0.7=0.14.
②飞机一次也没有被击中的概率
P=0.6×0.5×0.3=0.09.
(2)设有10把各不相同的钥匙,其中只有一把能打开某间房门,由于不知道哪一把是这间房门的钥匙,从而只好将这些钥匙逐个试一试.如果所试开的一把钥匙是从还没有试过的钥匙中任意取出的,试求:
①第一次试能打开门的概率;
②第k次(k=1,2,…,10)试能打开门的概率.
解:①P=.
②P=….
(3)在一次三人象棋对抗赛里,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局负者;第四局,第三局胜者对第二局负者,每局比赛必须决出胜负,试计算:
①乙连胜4局的概率;
②丙连胜3局的概率.
解:①P=0.6×0.5×0.6×0.5=0.09.
②P=0.4×0.6×0.5×0.6+0.6×0.5×0.6×0.5=0.162.
评述:注意灵活分析同时发生的相互独立事件的结构,并加以概率计算.
(4)(2004全国,文20)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女生能通过测验的概率均为,每位男生能通过测验的概率均为.试求:
①选出的3位同学中,至少有一位男同学的概率;
②10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
解:①随机选出的3位同学中,至少有一位男同学的概率为1-.
②甲、乙被选中且能通过测验的概率为.
评述:灵活应用排列、组合、概率等基本概念及独立事件和互斥事件的概率以及概率知识解决实际问题.
(5)(2004陕、甘、宁,文20)某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6.且各题答对与否相互之间没有影响.
①求这名同学得300分的概率;
②求这名同学至少得300分的概率.
解:记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则
P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
①这名同学得300分的概率
P1=P(A1A3)+P(A2A3)
=P(A1)P()P(A3)+P()P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6
=0.228.
②这名同学至少得300分的概率
P2=P1+P(A1A2A3)
=0.228+P(A1)P(A2)P(A3)
=0.228+0.8×0.7×0.6
=0.564.
●备课资料?
一、参考例题
[例1]甲、乙两同学同时解一道数学题,设事件A:“甲同学做对”,事件B:“乙同学做对”,试用事件A、B表示下列事件.
(1)甲同学做错,乙同学做对;
(2)甲、乙同学同时做错;
(3)甲、乙两同学中至少一人做对;
(4)甲、乙两同学中至多一人做对;
(5)甲、乙两同学中恰有一人做对.
分析:由于事件A:“甲同学做对”,事件B:“乙同学做对”,则:“甲同学做错”,:“乙同学做错”.因为事件A与B是相互独立事件,所以A与,与B,与都是相互独立事件.
解:(1)事件与事件B同时发生,即B;
(2)事件与事件同时发生,即;
(3)事件A,B,AB互斥,其有一发生,则事件发生,即A+B+AB;
(4)事件可表示为+B+A.
(5)事件可表示为A+B.
[例2]两台雷达独立地工作,在一段时间内,甲雷达发现飞行目标的概率为0.9,乙雷达发现目标的概率为0.85,计算在这段时间内,下列各事件的概率.
(1)甲、乙两雷达均未发现目标;
(2)至少有一台雷达发现目标;
(3)至多有一台雷达发现目标.
分析:设这段时间内,事件A:“甲雷达发现目标”,事件B:“乙雷达未发现目标”.由于两雷达独立工作,故事件A与B相互独立.
解:设事件A:“甲雷达发现目标”,事件B:“乙雷达发现目标”.
因甲、乙两台雷达独立工作,故事件A与B相互独立.所以事件A与,与B,与也相互独立.
(1)∵甲、乙两雷达均未发现目标,即事件()发生,
∴甲、乙两雷达均未发现目标的概率
P()=P()P()=[1-P(A)][1-P(B)]=0.1×0.15=0.015.
(2)解法一:∵至少有一台雷达发现目标,即事件“A+B+AB”发生,
又∵事件A,B,AB彼此互斥,
∴所求的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=0.9×0.15+0.1×0.85+0.9×0.85
=0.985.
解法二:∵事件“至少有一台雷达发现目标”与事件“两台雷达均未发现目标”是对立事件,
∴所求的概率为
1-P()=1-P()P()=1-0.1×0.15=0.985.
(3)解法一:∵至多有一雷达发现目标,即事件A+B+彼此互斥
∴所求的概率
P(A+B+)
=P(A)+P(B)+P()
=P(A)P(B)+P()P(B)+P()P()
=0.9×0.15+0.1×0.85+0.1×0.15
=0.235.
解法二:∵事件“至多一台雷达发现目标”与事件“两雷达同时发现目标”是对立事件,
∴所求的概率为
1-P(AB)=1-P(A)P(B)=1-0.9×0.85=0.235.
[例3]有甲、乙、丙3批罐头,每批100个,其中各有1个是不合法的,从三批罐头中各抽出1个,求抽出的3个中至少有1个不合格的概率.
分析:设从甲、乙、丙3批罐头中各抽出1个,得到不合格的事件分别为A、B、C;因为事件“抽出的3个中至少有1个是不合格的”与事件“抽出的3个全是合格的”是对立事件,且事件A、B、C相互独立,故所求的事件概率可求.
解:设从甲、乙、丙三批罐头中各抽出1个,得到不合格的事件分别为A、B、C;则事件A、B、C相互独立,、、也相互独立.
∵事件“抽出的3个中至少有1个是不合格的”与事件“抽出的3个全是合格的”是对立事件,
∴所求的概率为1-P(),
即1-P()P()P()
=1-
=1-0.993≈0.03.
[例4]已知某种高炮在它控制的区域内击中敌机的概率为0.2.
(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后被击中的概率;
(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?
分析:因为敌机被击中就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.
解:(1)设敌机被第k门高炮击中的事件为Ak(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为.
∵事件A1,A2,A3,A4,A5相互独立,
∴敌机未被击中的概率
P()
=P()P()P()P()P()
=(1-0.2)5=()5.
∴敌机被击中的概率为1-()5.
(2)至少需要布置n门高炮才能有0.9以上概率被击中,仿(1)可得敌机被击中的概率为1-()n,
令1-()n>0.9,
即()n<.
两边取常用对数,得n>≈10.3.
∵n∈N*,∴n=11.
∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.
评述:逆向思维在解决带有词语“至多”“至少”的问题时的运用,常常能使问题的解答变得简便.
二、参考练习
1.选择题
(1)同一天内,甲地下雨的概率是0.12,乙地下雨的概率是0.15,假定在这天两地是否下雨相互之间没有影响,那么甲、乙两地都不下雨的概率是
A.0.102B.0.132
C.0.748D.0.982
答案:C
(2)一名学生体育达标的概率是,他连续测试2次,那么其中恰有1次达标的概
率为
A.B.
C.D.
答案:C
(3)甲、乙两人独立地解决一道数学题,已知甲能解对的概率为m,乙能解对的概率为n,那么这道数学题被得到正确解答的概率为
A.m+nB.mn
C.1-(1-m)(1-n)D.1-mn
答案:C
(4)甲、乙两个学生通过某种英语听力测试的概率分别为、,两人同时参加测试,其中有且只有1个通过的概率是
A.B.
C.D.1
答案:C
(5)有10个均匀的正方体玩具,在它的各面上分别标以数字1,2,3,4,5,6,每次同时抛出,共抛5次,则至少有一次全部都是同一个数字的概率是
A.[1-()10]5B.[1-()5]10
C.1-[1-()5]10D.1-[1-()10]5
答案:D
2.填空题
(1)在甲盒内有螺杆200个,其中A型有160个,在乙盒内有螺母240个,其中A型有180个,若从甲、乙两盒内各任取一个,则能配套的一对螺杆、螺母的概率是________.
答案:
(2)某种大炮击中目标的概率是0.7,要以m门这种大炮同时射击一次,就可以击中目标的概率超过0.95,则m的最小值为________.
答案:3
3.解答题
(1)某两人负责照看三台机床工作,如果在某一小时内机床不需要照看的概率,第一台是0.8,第二台是0.85,第三台是0.9,假定各台机床是否需要照看相互之间没有影响,计算在这个小时内至少有1台机床要两人照看的概率为多少?
解:由题意,可得至少有一台机床要照看的概率,
P=1-0.8×0.9×0.85=0.388.
∴至少有1台要照看的概率为0.388.
(2)某篮球运动员在罚球上投篮两次,已知该运动员一次投篮进球的概率为0.8,试求下列各事件的概率.①两次都未投进;
②只有一次投进;
③至少有一次投进;
④至多有一次投进.
解:①P=(1-0.8)2=0.04.
②P=0.8×(1-0.8)+0.2×0.8=0.32.
③P=1-(1-0.8)(1-0.8)=0.96.
④P=0.04+0.32=0.36.
(3)一射手射击时,命中10环的概率为0.7,命中9环的概率为0.3,求该射手射击三次得到不少于27环的概率.
解:“不少于27环”即每次不少于9环,
则P=0.33+3×0.7×0.7×0.3+0.73=0.811.
∴不少于27环的概率为0.811.
(4)甲、乙两人进行射击比赛,先命中目标者为胜,已知甲、乙两人命中目标的概率都是,每枪都以甲先乙后的顺序进行比赛,求:
①甲先胜的概率;
②乙先胜的概率.
解:①据题意,可知甲先胜的概率
P=+…
=
=.
②P=+…
=[1+()2+()4+…]
=.
评述:逆向思维在解决带有词语“至多”“至少”的问题时的运用,常常能使问题的解答变得简便.
(5)一次数学测验共有10道单项选择题,每题都有四个选项.评分标准规定:考生每答对一题得4分,不答或答错一题倒扣1分.某考生能正确解答第1~6道题,第7~9题的四个选项中可正确排除其中一个错误选项.因此该考生从余下的三个选项中猜选一个选项.第10题因为题目根本读不懂,只好乱猜.在上述情况下,试求:
(1)该考生这次测试中得20分的概率;
(2)该考生这次测试中得30分的概率.
解:(1)设可排除一个错误选项的试题答对为事件A,乱猜的一题答对事件为B,
则P(A)=,P(B)=,那么得分为20分的事件相当于事件A独立重复试验3次没有1次发生而事件B不发生.
其概率为:
.
答:该考生这次测试中得20分的概率为.
(2)得30分的事件相当于事件A独立重复试验3次有2次发生而且事件B不发生,或事件A独立重复试验3次只有1次发生而且事件B发生.
其概率
.
答:该考生这次测试中得30分的概率为.
(6)(2004年湖北,文21)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措后此突发事件不发生的概率(记为P)和所需费用如下表:
预防措施甲乙丙丁
P0.90.80.70.6
费用(万元)90603010
预防方案可单独采用一种预防措施或联合采用几种预防措施.在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
解:方案一:单独采用一种预防措施的费用均不超过120万元.由表可知采用甲措施可使此突发事件不发生的概率最大,其概率为0.9.
方案二:联合采用两种预防措施,费用不超过120万元.由表可知联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97.
方案三:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为
1-(1-0.8)(1-0.7)(1-0.6)=1-0.2×0.3×0.4=1-0.024=0.976.
综合上述三种预防方案,可知在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.
●备课资料?
一、参考例题
[例1]求一位病人服用某药品被治愈的概率为90%,求服用这种药的10位患有同样疾病的病人中至少有7人被治愈的概率.
分析:设事件A:“服用此药后病人被治愈,则有P(A)=90%”.
解:∵10位病人独立地服用此药相当于10次独立重复试验,至少7人被治愈即是事件A至少发生7次,
∴所求的概率
P=P10(7)+P10(8)+P10(9)+P10(10)
=0.970.13+0.980.12+0.990.1+0.910≈0.98.
[例2]某人参加一次考试,若五道题中解对4道则为及格,已知他解一道题的正确率为0.6,试求他能及格的概率.
分析:设事件A:“解题一道正确”则P(A)=0.6,由于解题五道相当于5次独立重复试验,且他若要获得及格需解对4题或5题,因此即在5次独立重复试验中,事件A至少发生4次.
解:设事件A:“解题一道正确”.
∵解五道题相当于5次独立重复试验,且他若要达到及格需解对其中的4道题或5道题,
∴事件A必须发生至少4次,其中“发生4次”与“发生5次”是互斥的.
∴所求的概率P=P5(4)+P5(5)=0.640.4+0.65≈0.34.
[例3]设在一袋子内装有6只白球,4只黑球,从这袋子内任意取球5次,每次取一只,每次取出的球又立即放回袋子内,求在5次取球中.
(1)取得白球3次的概率;
(2)至少有1次取得白球的概率.
分析:设事件A:“取球一只得白球”,由于每次取出的球又放回袋子内,因此取球5次可以看成5次独立重复试验.
解:(1)设事件A:“取球一只,得到白球”,则P(A)=,根据题意,可知从袋子里任意取球5次就是5次独立重复试验.
∵取得白球3次相当于事件A发生3次,
∴所求的概率P5(3)=()3()2≈0.35.(2)∵在上述的5次独立重复试验中,事件A恰好发生0次的概率
P5(0)=()0()5≈0.010,
∴所求的概率为1-P5(0)=1-0.01=0.99.
[例4]某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内这5台机床中至少2台需要工人照管的概率是多少?
分析:设事件A:“一台机床需要工人照管”,则P(A)=,且5台机床需要照管相当于5次独立重复试验.1小时内这5台机床中至少2台需要照管就是指事件A至少发生2次.
解:设事件A:“一台机床需要工人照管”,则有P(A)=.
∵5台机床需要照管相当于5次独立重复试验,
而事件A至少发生2次的概率为
1-[P5(1)+P5(0)]=1-[()()4+()0()5]≈0.37,
∴所求概率为0.37.
[例5]某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不少于0.75,至少应射击n次?
分析:设至少射击n次,事件A:“射击一次命中目标”,则P(A)=0.25.由于“射击n次至少命中1次”与“射击n次命中0次”是对立事件,故射击n次,至少命中1次的概率为1-Pn(0).
解:设至少应射击n次,事件A:“射击一次命中目标”,则P(A)=0.25.
∵射击n次相当于n次独立重复试验,
∴事件A至少发生1次的概率为
1-Pn(0)=1-(0.25)0(1-0.25)n=1-0.75n.
令1-()n≥,∴()n≤,即
n≥≈4.82.
∵n∈N*,∴n=5.
∴至少射击5次.
二、参考练习
1.选择题
(1)在某一次试验中事件A出现的概率为P,则在n次独立重复试验中出现k次的概率为
A.1-PkB.(1-P)kPn-k
C.1-(1-P)kD.(1-P)kPn-k
答案:D
(2)设在一次试验中事件A出现的概率为P,在n次独立重复试验中事件A出现k次的概率为Pk,则
A.P1+P2+…+Pn=0B.P0+P1+P2+…+Pn=1
C.P0+P1+P2+…+Pn=0D.P1+P2…+Pn=1
答案:B
2.填空题
(1)从次品率为0.05的一批产品中任取4件,恰有2件次品的概率为________.
答案:0.052(1-0.05)2
(2)某事件在5次重复独立试验,一次也没有发生的概率为P5(0),恰有一次发生的概率为P5(1),则该事件至少发生1次的概率为________.
答案:1-[P5(0)+P5(1)]
3.解答题
(1)某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:
①在任一时刻车间里有3台车床处于停车的概率;
②至少有一台处于停车的概率.
解:①P=()3(1-)2≈0.11.
②P=1-()0(1-)5≈0.13.
(2)种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:
①全部成活的概率;
②全部死亡的概率;
③恰好成活3棵的概率;
④至少成活4棵的概率.
解:①P=0.95≈0.59.
②P=(1-0.9)5=0.15.
③P=0.93(1-0.9)2≈0.073.
④P=0.94(1-0.9)+0.95≈0.92.
(3)用8门炮摧毁某一目标,如果至少命中2发时,目标就被摧毁,假定每门炮命中目标的概率都是0.6,若8门炮同时向目标发射一发炮弹,求目标被摧毁的概率.
解:分析题意可知“至少要有2门命中目标”其概率
P=1-P8(0)-P8(1)=1-0.60(1-0.6)8-0.6(1-0.6)7≈0.99.
(4)在抗菌素的生产中,常常需要优良菌株,若一只菌株变成优良菌株的概率是0.05,那么,从一大批经过诱变处理的菌株中,选择多少株进行培养,就能有95%以上的把握至少选到一只优良菌株?
解:设选n只菌株进行培养可得到优良菌株,
∴1-Pn(0)=1-0.050(1-0.05)n=1-0.95n≥0.95.
∴n=58.
∴至少选择58株.
(5)甲、乙两人下棋,在每盘比赛中,甲取胜的概率为0.5,乙取胜的概率为0.4,平局的概率为0.1,他们决定不管如何都要下完三盘棋,谁胜两盘以上(含两盘)谁就是最后的胜利者,分别计算甲、乙获胜的概率.
解:甲获胜的概率
P1=3×0.52×(1-0.5)+3×0.52×0.1+0.53
=4×0.53+0.52×0.3=0.575.
乙获胜的概率
P2=3×0.42×(1-0.4)+3×0.42×0.1+0.43=0.4.
(6)甲、乙两人投篮,命中率各为0.7和0.6,每人投球三次,求下列事件的概率:
①两人都投进2球;
②两人投进的次数相等.
解:①P=[0.72(1-0.7)]×[0.62(1-0.6)]≈0.19.
②P=[0.70(1-0.7)30.60(1-0.6)3]+[0.7(1-0.7)20.6(1-0.6)2]+[0.72(1-0.7)0.62(1-0.6)]+[0.73(1-0.7)00.63(1-0.6)0]≈0.148.
(7)在一次试验中,事件A发生的概率为p,求在n次独立重复试验中事件A发生奇数次的概率.
解:据题意,可知
所求概率
P=p(1-p)n-1+p3(1-p)n-3+p5(1-p)n-5+…+{[(1-p)+p]n+[(1-p)-p]n}=+(1-2p)n.
评述:在n次独立重复试验中某事件至多(或至少)发生k次的概率计算的一种常用方法——逆向思维法.

高二数学随机事件的概率36


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,让教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的教案呢?下面是小编为大家整理的“高二数学随机事件的概率36”,欢迎阅读,希望您能阅读并收藏。

第1节随机事件的概率
1.有下列事件:
①连续掷一枚硬币两次,两次都出现正面朝上;
②异性电荷相互吸引;
③在标准大气压下,水在1℃结冰;
④买了一注彩票就得了特等奖.
其中是随机事件的有()
A.①②B.①④C.①③④D.②④
2.(创新题)下列事件中,随机事件的个数为()
①方程ax+b=0有一个实数根;
②2009年5月15日,去新加坡旅游的人感染甲型H1N1;
③2012年伦敦奥运会中国拿金牌数居第一名;
④常温下,焊锡熔化;
⑤若a>b,那么ac>bc.
A.2B.3C.4D.5
3.关于随机事件的频率与概率,以下说法正确的是()
A.频率是确定的,概率是随机的
B.频率是随机的,概率也是随机的
C.概率是确定的,概率是频率的近似值
D.概率是确定的,频率是概率的近似值
4.下列事件中,随机事件是()
A.向区间(0,1)内投点,点落在(0,1)区间
B.向区间(0,1)内投点,点落在(1,2)区间
C.向区间(0,2)内投点,点落在(0,1)区间
D.向区间(0,2)内投点,点落在(-1,0)区间
5.事件A的频率满足()
A.=0B.=1C.0<<1D.0≤≤1
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为.
7.同时掷两枚骰子,点数之和在2~12间的事件是事件,点数之和为12的事件是事件,点数之和小于2或大于12的事件是事件;将一枚骰子连掷两次,点数之差为5的事件是事件,点数之差为6的事件是事件.
8.指出下列随机事件的条件及结果.
(1)某人射击8次,恰有2次中靶;
(2)某人购买福利彩票10注,有2注中得三等奖,其余8注未中奖.

9.(1)某厂一批产品的次品率为,问任意抽取10件产品是否一定会发现一件次品?为什么?
(2)10件产品中次品率为,问“这10件产品中必有一件次品”的说法是否正确?为什么?

10.(改编题)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径个数直径个数
d∈(6.88,6.89]1d∈(6.93,6.94]26
d∈(6.89,6.90]2d∈(6.94,6.95]15
d∈(6.90,6.91]10d∈(6.95,6.96]8
d∈(6.91,6.92]17d∈(6.96,6.97]2
d∈(6.92,6.93]17d∈(6.97,6.98]2
直径个数从这100个螺母中,任意抽取一个,求事件A(d∈(6.92,6.94]),事件B(d∈(6.90,6.96]),事件C(d6.96)的频率.

11.某射手在同一条件下进行射击,结果如下表所示:
射击次数n1020501002005001000
击中靶心的次数m8194490178455906
击中靶心的频率
(1)计算表中击中靶心的各个频率;
(2)这个运动员击中靶心的概率约是多少?

12.(创新题)某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分,然后作了统计,下表是统计结果.
贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;
(2)求两个地区参加测试的儿童得60分以上的概率;
(3)分析贫富差距为什么会带来人的智力的差别.

答案
1.B2.C3.D4.C5.D6.0.037.必然随机不可能随机不可能
8.(1)条件:某人射击8次;结果:恰有2次中靶.
(2)条件:某人购买福利彩票10注;结果:2注中得三等奖,其余8注未中奖.
9.(1)不一定,因为此处次品率即指概率,是随机事件的结果,而不是确定性事件的结果.
(2)正确,因为这是确定事件.
10.设n=100,A、B、C发生的次数分别为
mA=17+26=43,mB=10+17+17+26+15+8=93,
mC=2+2=4.
事件A发生的频率为=0.43,
事件B发生的频率为=0.93,
事件C发生的频率为=0.04.
11.(1)0.8,0.95,0.88,0.9,0.89,0.91,0.906(2)0.9
12.(1)贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率0.5330.5400.5200.5200.5120.503
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率0.5670.5800.5600.5550.5520.550
(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.
(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.

文章来源:http://m.jab88.com/j/45366.html

更多

最新更新

更多