教学目标:
1.使学生会辨认直角、锐角和钝角,能用更准确的、更具体的数学化语言描述生活中的角。
2.培养学生的口头表达能力和动手操作的能力。
3.培养学生善于观察、从生活中发现数学的良好习惯。
教学方法:以智慧爷爷送礼物的方式激发学生的兴趣,通过分一分、比一比的方法认识锐角和钝角以及他们的判断方法,然后通过做角、找角、分角、画角、拼角等多种形式来进一步巩固学生对角的认识。
教学具准备:每组一盒画有大小不同的角的卡片、三角板、尺子、多媒体课件等
教学过程:
一、激趣引入
同学们,智慧爷爷托老师带给大家一件礼物,想知道是什么吗?现在就在你们桌上的盒子里,赶快打开来看一看。不过在看之前智慧爷爷还有个小小的要求,就是看过之后各组要把盒子里的东西按一定的标准分一分,行吗?好,开始行动。
1.各小组倒出来后发现是相同的卡片上画着大小不同的角,然后以组试分。
2.小组派代表汇报分的结果。(一般会分成两类:直角和其他的角)
3.这些是直角,那么,那些是什么角,又有什么特点呢?这节课我们就一起走进角的皇宫,来研究有关角的问题。
二、认识锐角和钝角
1.引导学生用刚才分出的第二类角与直角比较,看哪些大一些,哪些小一点?
2.小组合作比较大小,然后交流比较方法和结果。
3.根据比较结果再次对盒子中的角进行分类,并且展示分的结果。
4.教师根据学生的分类结果给出各种角的名称(即锐角与钝角)以及判断标准。
5.鼓励学生说说教室里或生活中哪里还有锐角或钝角。
三、组织活动,巩固认角
1.做角:鼓励学生采用多种活动方式做出不同的角巩固对三种角的认识。(如:采用折角、拼角或做活动角的方式进行练习。)
2.找角:引导学生从实物中找出角并分类放入相应的房子里。
师:直角、锐角、钝角都玩累想回家了,可找不到路,于是便找了一些地方藏起来休息,同学们,你愿意帮他们吗?
(多媒体课件出示事物图P391题图以及标有三种角的三所房子。引导学生从实物中找出角,然后利用动态效果从实物中抽取出学生说的角,分类把角送回家。)
四、画角
1.大家真是爱帮助人的好孩子,这些角为了感谢大家想为自己画一些像送给大家,你最希望得到什么样的画像呢?能试着把你希望得到的画像画出来吗?
2.学生独立尝试画出自己喜欢的角,并用三角板上的直角来判断是哪一类角。
3.展示自己画的角并交流画角的方法。(教师对学生想出的多种合理方法要予以肯定和鼓励。)
五、拓展活动
同学们在研究角的过程中,三角板帮了我们的大忙,为了感谢三角板,我们来一起陪它做个游戏,轻松一下,好吗?
1.引导学生用三角板做拼摆图形的游戏。
2.各组交流拼出的是什么图形,在此图形中有几个角,分别是什么角,是由三角板上的哪些角组成?
六、总结。
章节第九章课题
课型复习课教法讲练结合
教学目标(知识、能力、教育)1.通过丰富的生活实例认识轴对称的有关概念和基本性质,理解对应点所连的线段被对称轴垂直平分的性质.探索并了解基本图形(线段、角、等腰三角形)的轴对称性及其相关性质.
2.通过丰富的生活实例认识中心对称图形的有关概念和基本性质,理解对应点所连成的线段都被对称中心平分的性质.探索并了解基本图形(平行四边形)的中心对称性及其相关性质.
教学重点轴对称的有关概念和基本性质;中心对称图形的有关概念和基本性质
教学难点根据图形的对称性作图和图案设计。
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.轴对称及轴对称图形的意义
(1)轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.
(2)如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.
(3)轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分.
(4)简单的轴对称图形:①线段:有两条对称轴:线段所在直线和线段中垂线.
②角:有一条对称轴:该角的平分线所在的直线.
③等腰(非等边)三角形:有一条对称轴,底边中垂线.
④等边三角形:有三条对称轴:每条边的中垂线.
2.中心对称图形
(1)定义:在平面内,一个图形绕某个点旋转180○,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
(2)性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分.
(3)中心对称与旋转对称的关系:中心对称是旋转角是180o的旋转对称.
(4)中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称.
(二):【课前练习】
1.如右图,既是轴对称图形,又是中心对称图形的是()
2.下列图形中对称轴最多的是()
A.圆B.正方形C.等腰三角形D.线段
3.数字______在镜中看作
4.如右图的图案是我国几家银行标志,其中轴对称图形有()
A.l个B.2个C.3个D.4个
5.4张扑克牌如⑴所示放在桌子上小敏把其中一张旋转180°
后得到如图⑵所示,那么她所旋转的牌从左数起是()
二:【经典考题剖析】
1.如图,已知直线1⊥2,垂足为O,作线段PM关于直线1、2的对称线段M1P1、M2P2,并说明M1P1和M2P2关于点O成中心对称.
2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判断方法是______
3.如图,将标号为A、B、C、D的正方形沿图中的虚线剪开后得到标号为P、Q、M、N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系,
填空:A与_____对应,B与______对应,
C与____对应,D与______对应.
4.如图所示图案中有且只有三条对称轴的是()
5.已知四边形ABCD和AB的中点O,求作四边形ABCD关于点O的对称图形.
三:【课后训练】
1.如图是四幅美丽的图案,其中既是轴对称图形又是中心对称图形的个数是()
A.1个B.2个C.3个D.4个
2.若图形关于某一条直线对称,则连结相应两对称点的线段必被对称轴________.
3.如图,由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是()
4.下列说法中,正确的是()
A.等腰梯形既是中心对称图形又是轴对称图形
B.正方形的对角线互相垂直平分且相等
C.矩形是轴对称图形且有四条对称轴
D.菱形的对角线相等
5.在右图中,既是轴对称图形,又是中心对称图形的是()
6.字母A,B,C,D,E,F,S,X,Y,Z中,是轴对称图形的有_______个.
7.某学校搞绿化,计划在一矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(个数不限)并使矩形场地成轴对称图形,请你试试看.
8.小明发现:如果将4棵树栽于正方形的四个顶点上,如图⑴所示,恰好构成一轴对称图形.你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图⑵、⑶上表示出来.如果是栽5棵,又如何呢?6棵、7棵呢?请分别在⑷、⑸、⑹上表示出来.
四:【课后小结】
布置作业地纲
◆1、感受坐标平面内图形变换的坐标变换.
◆2、了解关于坐标轴对称的两个点的坐标关系.
◆3、会求与已知点关于坐标轴对称的点的的坐标.
◆4、利用关于坐标轴对称的两个对称点的坐标关系,求作轴对称图形.
〖教学重点与难点〗
◆教学重点:关于坐标轴对称的两个点之间的坐标关系.
◆教学难点:利用关于坐标轴对称的两点之间的坐标关系,在坐标平面内作轴对称图形的过程比较复杂,是本节教学的难点.
〖教学过程〗
一、创设情境,导入新课
在坐标平面内,将第一象限内的图案作怎样的对称变换,就得到了海葵的图像?经学生回答后提出课题,在坐标平面内关于坐标轴对称的两个点的坐标究竟存在着什么关系?
.A
二、合作讨论,探求新知
1、提出问题:如图,(1)写出A点的坐标;
(2)分别作点A关于x轴、y轴的对称点,并写出它们的坐标;
2、探究比较点A与它关于x轴、y轴的对称点的坐标,你发现了什么规律?
3、合作交流:学生交流合作,1分钟后给出结论,教师点评并鼓励
变换
AA1(关于x轴对称)则横坐标不变,纵坐标互为相反数
变换
AA2(关于y轴对称)则纵坐标不变,横坐标互为相反数
4、一般规律:在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点坐标为(-a,b).
三、师生互动,掌握新知
1、在人人参与的活动中掌握新知.以同桌的两个人为一组,一位同学提出一个点的坐标并问另一位同学它关于x轴或关于y轴的对称点的坐标是什么;
2、教师提问,突出数形结合.
例1、角坐标系中,点A(-1,2)在第几象限?它关于x轴的对称点在第几象限?坐标是什么?它关于y轴的对称点在第几象限?坐标是什么?点B(1,-)呢?点C(0,1.5)呢?
3、向训练,拓展思维。设计一组已知点和像的坐标,求变换规则.
例2、问下列两点各是关于什么坐标轴对称?
(1)、(-2,-1)和(-2,1)(2)、(3,0)和(-3,0)(3)、(2.5,-2)和(-2.5,-2)
4、运用转化思想,解决本节难点.例3、如图,(1)求出图开轮廓线上各转折点的A、O、B、C、D、E、F的坐标,以及它们关于y轴的对称点的坐标A′、O′、B′、C′、D′、E′、F′;
(2)在同一坐标系中描点A′、O′、B′、C′、D′、E′、F′,并用线段依次将它们连结起来.
小结例3,例3问题就是利用坐标变换完成图形的轴对称变换.提出问题:要把一个轴对称图形画在直角坐标系中,怎样画才简便?(让学生交流后回答)教师小结:①确定一条坐标轴为对称轴②确定一半图形上一些关键点的坐标并画出一半图形③通过点的轴对称变换求出另一半关键点的坐标并描点④依次连结这些关键点画出另一半图形
5、应用新知,解决问题.
合作学习:一个零件主视图如图,请完成以下任务:(1)按你自己认为合适的比例,选取合适的方格纸,建立直角坐标系;(2)在直角坐标系中选取适当的位置,作出这个主视图,标明比例,并求出轮廓线各个转折点的坐标;(3)与同伴作出的图形比较,它们的形状相同吗?大小呢?你能用图形变换的观点加以说明吗?
6、巩固练习:课内练习
四、小结回顾,反思提高:提问你本堂课有什么收获?
(1)关于坐标轴对称的两个点的坐标关系.
(2)在坐标平面内利用坐标变换完成图形的轴对称变换.
五、作业布置:书本作业题
文章来源:http://m.jab88.com/j/68508.html
更多