88教案网

20xx高考物理大一轮复习第4章曲线运动、万有引力与航天(10份打包有课件)

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生能够在教学期间跟着互动起来,帮助教师更好的完成实现教学目标。您知道教案应该要怎么下笔吗?以下是小编为大家精心整理的“20xx高考物理大一轮复习第4章曲线运动、万有引力与航天(10份打包有课件)”,仅供参考,欢迎大家阅读。

第1节曲线运动运动的合成与分解
一、曲线运动
1.运动特点
(1)速度方向:质点在某点的速度,沿曲线上该点的切线方向.
(2)运动性质:做曲线运动的物体,速度的方向时刻改变,所以曲线运动一定是变速运动,即必然具有加速度.
2.曲线运动的条件
(1)从动力学角度看:物体所受合力的方向跟它的速度方向不在同一条直线上.
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上.
二、运动的合成与分解
1.基本概念
分运动????运动的合成运动的分解合运动
2.分解原则
根据运动的实际效果分解,也可采用正交分解.
3.运算法则
位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.
4.合运动和分运动的关系
(1)等时性:合运动与分运动经历的时间相等.
(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.
(3)等效性:各分运动叠加起来与合运动有完全相同的效果.
[自我诊断]
1.判断正误
(1)速度发生变化的运动,一定是曲线运动.(×)
(2)做曲线运动的物体加速度一定是变化的.(×)
(3)做曲线运动的物体速度大小一定发生变化.(×)
(4)曲线运动可能是匀变速运动.(√)
(5)两个分运动的时间一定与它们的合运动的时间相等.(√)
(6)合运动的速度一定比分运动的速度大.(×)
(7)只要两个分运动为直线运动,合运动一定是直线运动.(×)
(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则.(√)
2.下列说法正确的是()
A.各分运动互相影响,不能独立进行
B.合运动的时间一定比分运动的时间长
C.合运动和分运动具有等时性,即同时开始、同时结束
D.合运动的位移大小等于两个分运动位移大小之和
解析:选C.各分运动具有独立性,A错误;合运动与分运动具有等时性,B错误,C正确;合运动的位移与分运动的位移满足矢量合成的法则,D错误.
3.(多选)某质点在光滑水平面上做匀速直线运动.现对它施加一个水平恒力,则下列说法正确的是()
A.施加水平恒力以后,质点可能做匀加速直线运动
B.施加水平恒力以后,质点可能做匀变速曲线运动
C.施加水平恒力以后,质点可能做匀速圆周运动
D.施加水平恒力以后,质点立即有加速度,速度也立即变化
解析:选AB.当水平恒力的方向与速度的方向在同一条直线上时,质点做匀变速直线运动,选项A正确;当水平恒力的方向与速度的方向不在同一条直线上时,质点做匀变速曲线运动,选项B正确;无论力的方向与速度的方向关系如何,质点都不可能做匀速圆周运动,选项C错误;速度不能发生突变,选项D错误.
4.(多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则()
A.越接近河岸水流速度越小
B.越接近河岸水流速度越大
C.无论水流速度是否变化,这种渡河方式耗时最短
D.该船渡河的时间会受水流速度变化的影响
解析:选AC.由船的运动轨迹可知,小船渡河过程是先做加速运动后做减速运动.河流的中心水流速度最大,越接近河岸水流速度越小,故A正确,B错误;由于船头垂直河岸,则这种方式过河的时间最短,C正确;船过河的时间与水流速度无关,D错误.
考点一物体做曲线运动的条件与轨迹分析
1.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向,图中M、N、P、Q表示物体运动的轨迹,其中正确的是()
解析:选B.物体运动的速度方向与运动轨迹一定相切,而且合外力F的方向一定指向轨迹的凹侧,故只有B正确.
2.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()
A.质点经过C点的速率比D点的大
B.质点经过A点时的加速度方向与速度方向的夹角小于90°
C.质点经过D点时的加速度比B点的大
D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小
解析:选A.质点做匀变速曲线运动,所以加速度不变;由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,所以C点速率比D点大.
3.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,将F1突然增大为2F1,则此后质点()
A.不一定做曲线运动
B.一定做匀变速运动
C.可能做匀速直线运动
D.可能做匀变速直线运动
解析:选B.F1增大前,质点沿合力方向做匀加速直线运动.F1增大后,合力方向与F1增大之前的质点的速度方向不共线,因而做曲线运动.由于二力方向不变,只将F1增大为2F1,所以合力恒定,质点做匀变速曲线运动.故本题答案为B.
考点二运动的合成与分解的应用
1.合运动与分运动的关系
(1)等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).
(2)等效性:各分运动叠加起来与合运动有相同的效果.
(3)独立性:一个物体同时参与几个运动,其中的任何一个都会保持其运动性质不变,并不会受其他分运动的干扰.虽然各分运动互相独立,但是它们共同决定合运动的性质和轨迹.
2.运动的合成与分解的运算法则
运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.
3.合运动性质的判断
加速度恒定:匀变速运动变化:非匀变速运动加速度方向与速度方向共线:直线运动不共线:曲线运动
题组一合运动性质的判断
1.(20xx江苏连云港模拟)(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧沿与水平方向成30°角的斜面向右上以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是()
A.橡皮的速度大小为2v
B.橡皮的速度大小为3v
C.橡皮的速度与水平方向成60°角
D.橡皮的速度与水平方向成45°角
解析:选BC.橡皮斜向右上方运动,具有沿斜面向上的分速度,与钉子沿斜面向上的速度相等,即为v;橡皮还具有竖直向上的分速度,大小也等于v;其实际速度大小(合速度)是两个分速度的合成,如图所示.故橡皮的实际速度大小(合速度):v′=2vcos30°=3v,且与水平方向成60°角,A、D错误,B、C正确.
2.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为()
A.西偏北方向,1.9×103m/s
B.东偏南方向,1.9×103m/s
C.西偏北方向,2.7×103m/s
D.东偏南方向,2.7×103m/s
解析:选B.设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1vcos30°,代入数据解得v2≈1.9×103m/s.选项B正确.
题组二与运动图象结合的合成与分解问题
3.物体在直角坐标系xOy所在的平面内由O点开始运动,其沿坐标轴方向的两个分速度随时间变化的图象如图所示,则对该物体运动过程的描述正确的是()
A.物体在0~3s做直线运动
B.物体在3s~4s做直线运动
C.物体在3s~4s做曲线运动
D.物体在0~3s做变加速运动
解析:选B.物体在0~3s内,x方向做匀速直线运动,y方向做匀加速直线运动,两运动的合运动,一定是曲线运动,且加速度恒定,则A、D错误;物体在3s~4s内两个方向的分运动都是匀减速运动,在3s末,速度与x轴的夹角tanθ=vyvx=34,加速度与x轴的夹角tanβ=ayax=34,因此合速度与合加速度方向相反,则做直线运动,故B正确,C错误.
4.有一个质量为2kg的质点在xy平面上运动,在x方向的速度图象和y方向的位移图象分别如图甲、乙所示,下列说法正确的是()
A.质点所受的合力为3N
B.质点的初速度为3m/s
C.质点做匀变速直线运动
D.质点初速度的方向与合力的方向垂直
解析:选A.由题图乙可知,质点在y方向上做匀速运动,vy=ΔxΔt=-4m/s,在x方向上做匀加速直线运动,a=ΔvΔt=1.5m/s2,故质点所受合力F=ma=3N,A正确;质点的初速度v=vx02+v2y=5m/s,B错误;质点做匀变速曲线运动,C错误;质点初速度的方向与合力的方向不垂直,如图所示,θ=53°,D错误.
考点三小船渡河问题
1.小船渡河问题的速度
(1)船的实际运动是水流的运动和船相对静水的运动的合运动.
(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).
2.小船渡河的三种情景
(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).
(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cosα=v2v1.
(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cosα=v1v2,最短航程:s短=dcosα=v2v1d.
1.(20xx湖北省重点中学联考)(多选)一只小船在静水中的速度为3m/s,它要渡过一条宽为30m的河,河水流速为4m/s,则这只船()
A.过河时间不可能小于10s
B.不能沿垂直于河岸方向过河
C.渡过这条河所需的时间可以为6s
D.不可能渡过这条河
解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30m,而垂直河岸方向的最大分速度即船自身的速度3m/s,所以渡河最短时间t=d3m/s=10s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.
2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()
A.kvk2-1B.v1-k2
C.kv1-k2D.vk2-1
解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.
3.(20xx四川绵阳质检)小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10min到达对岸下游120m处;若船头保持与河岸成α角向上游航行,出发后12.5min到达正对岸.求:
(1)水流的速度;
(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.
解析:(1)船头垂直对岸方向航行时,如图甲所示.
由x=v2t1得v2=xt1=120600m/s=0.2m/s①
(2)船头保持与岸成α角航行时,如图乙所示.
由(1)可得d=v1t1
v2=v1cosα②
d=v1t2sinα③
联立解得α=53°,v1=0.33m/s,d=200m
答案:(1)0.2m/s(2)0.33m/s200m53°
(1)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关.
(2)船渡河位移最小值与v船和v水大小关系有关,v船>v水时,河宽即为最小位移,v船<v水时,应利用图解法求极值的方法处理.
考点四关联速度问题
1.问题特点:沿绳(或杆)方向的速度分量大小相等.
2.思路与原则
(1)思路
①明确合速度→物体的实际运动速度v;
(2)原则:v1与v2的合成遵循平行四边形定则.
3.解题方法
把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.
1.在距河面高度h=20m的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3m/s拉绳,使小船靠岸,那么()
A.5s时绳与水面的夹角为60°
B.5s后小船前进了15m
C.5s时小船的速率为4m/s
D.5s时小船到岸边的距离为15m
解析:选D.设开始时小船距岸边为L,则L=htan30°=203m,5s后绳端沿岸位移为x=vt=3×5m=15m,设5s后小船前进了x′,绳与水平面的夹角为θ,由几何关系得sinθ=h2h-x=202×20-15=0.8,解得θ=53°,选项A错误;由tanθ=hL-x′,解得x′=19.64m,选项B错误;由v船cosθ=v可得此时小船的速率为v船=5m/s,选项C错误;5s时小船到岸边的距离为L-x′=203m-19.64m=15m,选项D正确.
2.如图所示,物体A、B经无摩擦的定滑轮用细线连在一起,A物体受水平向右的力F的作用,此时B匀速下降,A水平向左运动,可知()
A.物体A做匀速运动
B.物体A做加速运动
C.物体A所受摩擦力逐渐增大
D.物体A所受摩擦力不变
解析:选B.设系在A上的细线与水平方向夹角为θ,物体B的速度为vB,大小不变,细线的拉力为FT,则物体A的速度vA=vBcosθ,FfA=μ(mg-FTsinθ),因物体下降,θ增大,故vA增大,物体A做加速运动,A错误,B正确;物体B匀速下降,FT不变,故随θ增大,FfA减小,C、D均错误.
3.(20xx上海四区联考)如图所示,长为L的直棒一端可绕固定轴O转动,另一端搁在升降平台上,平台以速度v匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为()
A.vsinαLB.vLsinα
C.vcosαLD.vLcosα
解析:选B.棒与平台接触点的实际运动即合运动的速度方向是垂直于棒指向左上方,合速度沿竖直向上方向上的速度分量等于v,即ωLsinα=v,所以ω=vLsinα.
课时规范训练
[基础巩固题组]
1.精彩的F1赛事相信你不会陌生吧!车王舒马赫在一个弯道上突然调整行驶的赛车致使后轮脱落,从而不得不遗憾地退出了比赛.关于脱落的后轮的运动情况,以下说法中正确的是()
A.仍然沿着汽车行驶的弯道运动
B.沿着与弯道垂直的方向飞出
C.脱落时,沿着轮子前进的方向做直线运动,离开弯道
D.上述情况都有可能
解析:选C.车轮被甩出后,不再受到车身的约束,被甩出的后轮沿甩出时的速度方向(即甩出点轨迹的切线方向)做直线运动,轮不可能沿车行驶的弯道运动,也不可能沿垂直于弯道的方向运动.故本题答案为C.
2.某电视台举办了一期群众娱乐节目,其中有一个环节是让群众演员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球.如果群众演员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中平台内箭头指向表示投篮方向)()
解析:选B.篮球若能被投入球筐,其合速度的方向应指向圆心,因平台逆时针旋转,所以投篮方向应是如图B所示,选项B正确.
3.跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是()
A.风力越大,运动员下落时间越长,运动员可完成更多的动作
B.风力越大,运动员着地时的竖直速度越大,有可能对运动员造成伤害
C.运动员下落时间与风力无关
D.运动员着地速度与风力无关
解析:选C.水平风力不会影响竖直方向的运动,所以运动员下落时间与风力无关,A错误,C正确;运动员落地时竖直方向的速度是确定的,水平风力越大,落地时水平分速度越大,则运动员着地时的合速度越大,有可能对运动员造成伤害,B、D错误.
4.(多选)如图,在河水速度恒定的小河中,一小船保持船头始终垂直河岸从一侧岸边向对岸行驶,船的轨迹是一个弯曲的“S”形,则()
A.小船垂直河岸的速度大小恒定不变
B.小船垂直河岸的速度大小先增大后减小
C.与船以出发时的速度匀速过河相比,过河时间长了
D.与船以出发时的速度匀速过河相比,过河时间短了
解析:选BD.船在沿河岸的方向上做匀速直线运动,即在相同的时间间隔内,在河岸方向上的位移是相同的;在垂直于河岸的方向上,在相等的时间间隔内(参照船在沿河岸方向上的时间),开始时位移的变化逐渐增大再逐渐减小,所以速度先增大后减小;因中间那段时间速度较大,所以与船保持恒定的初始速度过河相比过河时间短了.选项B、D正确.
5.(多选)如右图所示,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,在消防车向前前进的过程中,人同时相对梯子匀速向上运动.在地面上看消防队员的运动,下列说法中正确的是()
A.当消防车匀速前进时,消防队员一定做匀加速直线运动
B.当消防车匀速前进时,消防队员一定做匀速直线运动
C.当消防车匀加速前进时,消防队员一定做匀变速曲线运动
D.当消防车匀加速前进时,消防队员一定做匀变速直线运动
解析:选BC.当消防车匀速前进时,消防队员一定做匀速直线运动,选项A错误,B正确;当消防车匀加速前进时,消防队员一定做匀变速曲线运动,选项C正确,D错误.
6.如图所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为()
A.vsinαB.vsinα
C.vcosαD.vcosα
解析:选C.人的速度为合速度,当人沿平直的河岸以速度v行走时,可将人的速度分解为沿绳方向的分速度和垂直于绳方向的分速度,沿绳方向的分速度即为船行驶的速度,故船的速度为vcosα,选项C正确.
7.如图所示,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A环上升至与定滑轮的连线水平时,其上升速度v1≠0,若这时B的速度为v2,则()
A.v2=0B.v2>v1
C.v2≠0D.v2=v1
解析:选A.环A在虚线位置时,环A的速度沿虚线方向的分速度为零,故物体B的速度v2=0,A正确.
[综合应用题组]
8.(多选)一快艇要从岸边某一不确定位置处到达河中离岸边100m远的一浮标处,已知快艇始终与河岸垂直,其在静水中的速度vx图象和流水的速度vy图象分别如图甲、乙所示,则()
A.快艇的运动轨迹为直线
B.快艇的运动轨迹为曲线
C.能找到某一位置使快艇最快到达浮标处的时间为20s
D.快艇最快到达浮标处经过的位移为100m
解析:选BC.快艇沿河岸方向的匀速运动与垂直于河岸的匀加速运动的合运动是类平抛性质的曲线运动,A错误,B正确;最快到达浮标处的方式是使垂直于河岸的速度vx保持图甲所示的加速度a=0.5m/s2的匀加速运动,则12at2=xx,代入xx=100m有t=20s,但实际位移为x=x2x+x2y>100m,C正确,D错误.
9.质量m=4kg的质点静止在光滑水平面上的直角坐标系的原点O处,先用沿+x轴方向的力F1=8N作用了2s,然后撤去F1;再用沿+y轴方向的力F2=24N作用了1s,则质点在这3s内的轨迹为()
解析:选D.由F1=max得ax=2m/s2,质点沿x轴匀加速直线运动了2s,x1=12axt21=4m,vx1=axt1=4m/s;之后质点受F2作用而做类平抛运动,ay=F2m=6m/s2,质点再经过1s,沿x轴再运动,位移x2=vx1t2=4m,沿+y方向运动位移y2=12ayt22=3m,对应图线可知D项正确.
10.如图,船从A处开出后沿直线AB到达对岸,若AB与河岸成37°角,水流速度为4m/s,则船从A点开出相对水流的最小速度为()
A.2m/sB.2.4m/s
C.3m/sD.3.5m/s
解析:选B.船参与了两个分运动,沿船头指向的分运动和顺水流而下的分运动,其中,合速度v合方向已知,大小未知,顺水流而下的分运动速度v水的大小和方向都已知,沿船头指向的分运动的速度v船大小和方向都未知,合速度与分速度遵循平行四边形定则(或三角形定则),如图,当v合与v船垂直时,v船最小,由几何关系得到v船的最小值为v船min=v水sin37°=2.4m/s,选项B正确.
11.在一个光滑水平面内建立平面直角坐标系xOy,质量为1kg的物体原来静止在坐标原点O(0,0),t=0时受到如图所示随时间变化的外力作用,图甲中Fx表示沿x轴方向的外力,图乙中Fy表示沿y轴方向的外力,下列描述正确的是()
A.0~4s内物体的运动轨迹是一条直线
B.0~4s内物体的运动轨迹是一条抛物线
C.前2s内物体做匀加速直线运动,后2s内物体做匀加速曲线运动
D.前2s内物体做匀加速直线运动,后2s内物体做匀速圆周运动
解析:选C.0~2s内物体沿x轴方向做初速度为零的匀加速直线运动,2s时受沿y轴方向的恒力作用,与速度方向垂直,故2~4s内物体做类平抛运动,C项正确.
12.(多选)如图所示,某同学在研究运动的合成时做了如图所示活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是()
A.笔尖做匀速直线运动
B.笔尖做匀变速直线运动
C.笔尖做匀变速曲线运动
D.笔尖的速度方向与水平方向夹角逐渐变小
解析:选CD.由题意知笔尖做匀变速曲线运动,A、B错误,C正确;笔尖的速度方向为合速度方向,右手沿水平方向的速度逐渐增大,则合速度方向与水平方向夹角逐渐变小,D正确.
13.如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A物体以速度v向左运动时,系A、B的绳分别与水平方向成α、β角,此时B物体的速度大小为()
A.vsinα/sinβB.vcosα/sinβ
C.vsinα/cosβD.vcosα/cosβ
解析:选D.根据A、B两物体的运动情况,将两物体此时的速度v和vB分别分解为两个分速度v1(沿绳的分量)和v2(垂直绳的分量)以及vB1(沿绳的分量)和vB2(垂直绳的分量),由于两物体沿绳的速度分量相等,v1=vB1,即vcosα=vBcosβ,则B物体的速度方向水平向右,其大小为vB=cosαcosβv,D正确.
14.如图所示,在一次抗洪救灾工作中,一架直升机A用一长H=50m的悬索(重力可忽略不计)系住伤员B,直升机A和伤员B一起在水平方向上以v0=10m/s的速度匀速运动的同时,悬索在竖直方向上匀速上拉.在将伤员拉到直升机内的时间内,A、B之间的竖直距离以l=50-5t(单位:m)的规律变化,则()
A.伤员经过5s时间被拉到直升机内
B.伤员经过10s时间被拉到直升机内
C.伤员的运动速度大小为5m/s
D.伤员的运动速度大小为10m/s
解析:选B.伤员在竖直方向的位移为h=H-l=5t(m),所以伤员的竖直分速度为v1=5m/s;由于竖直方向做匀速直线运动,所以伤员被拉到直升机内的时间为t=Hv1=505s=10s,故A错误,B正确;伤员在水平方向的分速度为v0=10m/s,所以伤员的速度为v=v21+v20=52+102m/s=55m/s,故C、D均错误.
第2节抛体运动
一、平抛运动
1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫平抛运动.
2.性质:平抛运动是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线.
二、平抛运动的规律
以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为y轴建立平面直角坐标系,则
1.水平方向:做匀速直线运动,速度:vx=v0,位移:x=v0t.
2.竖直方向:做自由落体运动,速度:vy=gt,位移:y=12gt2
3.合运动
(1)合速度:v=v2x+v2y=v20+gt2,方向与水平方向夹角为θ,则tanθ=vyv0=gtv0.
(2)合位移:s=x2+y2=v0t2+12gt22,方向与水平方向夹角为α,则tanα=yx=gt2v0.
三、斜抛运动
1.定义:将物体以一定的初速度沿斜向上或斜向下抛出,物体仅在重力的作用下所做的运动,叫做斜抛运动.
2.性质:加速度恒为g的匀变速曲线运动,轨迹是抛物线.
3.基本规律
以斜向上抛为例说明,如图所示.
(1)水平方向:v0x=v0cos_θ,F合x=0.
(2)竖直方向:v0y=v0sin_θ,F合y=mg.
因此斜抛运动可以看做是水平方向的匀速直线运动和竖直方向的竖直上(下)抛运动的合运动.
[自我诊断]
1.判断正误
(1)以一定的初速度水平抛出的物体的运动是平抛运动.(×)
(2)做平抛运动的物体的速度方向时刻在变化,加速度方向也时刻在变化.(×)
(3)做平抛运动的物体初速度越大,水平位移越大.(×)
(4)做平抛运动的物体,初速度越大,在空中飞行时间越长.(×)
(5)从同一高度平抛的物体,不计空气阻力时,在空中飞行的时间是相同的.(√)
(6)无论平抛运动还是斜抛运动,都是匀变速曲线运动.(√)
(7)做平抛运动的物体,在任意相等的时间内速度的变化是相同的.(√)
2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有()
A.两球的质量应相等
B.两球应同时落地
C.应改变装置的高度,多次实验
D.实验也能说明A球在水平方向上做匀速直线运动
解析:选BC.小锤打击弹性金属片后,A球做平抛运动,B球做自由落体运动.A球在竖直方向上的运动情况与B球相同,做自由落体运动,因此两球同时落地.实验时,需A、B两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A球在水平方向上的运动性质,故选项B、C正确,选项A、D错误.
3.做平抛运动的物体,落地过程在水平方向通过的距离取决于()
A.物体的初始高度和所受重力
B.物体的初始高度和初速度
C.物体所受的重力和初速度
D.物体所受的重力、初始高度和初速度
解析:选B.水平方向通过的距离x=v0t,由h=12gt2得t=2hg,所以时间t由高度h决定;又x=v0t=v02hg,故x由初始高度h和初速度v0共同决定,B正确.
考点一平抛运动的基本规律
1.飞行时间:由t=2hg知,时间取决于下落高度h,与初速度v0无关.
2.水平射程:x=v0t=v02hg,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关.
3.落地速度:vt=v2x+v2y=v20+2gh,以α表示落地速度与x轴正方向的夹角,有tanα=vyvx=2ghv0,所以落地速度也只与初速度v0和下落高度h有关.
4.速度改变量:因为平抛运动的加速度为重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.
5.两个重要推论
(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tanα=2tanθ.
1.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()
A.3gR2B.33gR2
C.3gR2D.3gR3
解析:选B.画出小球在B点速度的分解矢量图,如图所示.由图可知,tan60°=v0gt,R(1+cos60°)=v0t,联立解得v0=33gR2,选项B正确.
2.(20xx浙江台州质检)从某高度水平抛出一小球,经过t时间到达地面时,速度方向与水平方向的夹角为θ,不计空气阻力,重力加速度为g,下列结论中正确的是()
A.小球初速度为gttanθ
B.若小球初速度增大,则平抛运动的时间变长
C.小球着地速度大小为gtsinθ
D.小球在t时间内的位移方向与水平方向的夹角为θ
解析:选C.如图所示,小球竖直方向的速度为vy=gt,则初速度为v0=gtcotθ,落地时速度v=gtsinθ,选项C正确,A错误;平抛运动的时间t=2yg,由高度决定,选项B错误;设位移方向与水平方向的夹角为α,则tanα=yx=gt2v0,tanθ=vyv0=gtv0,则tanθ=2tanα,选项D错误.
3.距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h等于()
A.1.25mB.2.25m
C.3.75mD.4.75m
解析:选A.根据两球同时落地可得2Hg=dABv+2hg,代入数据得h=1.25m,选项A正确.
分解思想在平抛运动中的应用
(1)解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度也不用分解加速度.
(2)画出速度(或位移)分解图,通过几何知识建立合速度(或合位移)、分速度(或分位移)及其方向间的关系,通过速度(或位移)的矢量三角形求解未知量.
考点二类平抛运动
1.受力特点:物体所受合力为恒力,且与初速度的方向垂直.
2.运动特点:在初速度v0方向做匀速直线运动,在合力方向做初速度为零的匀加速直线运动,加速度a=F合m.
3.求解技巧
(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向列方程求解.
1.(多选)如图所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于斜面同一高度处,其中小球b在两斜面之间,a、c分别在两斜面顶端.若同时释放a、b、c,小球到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,小球到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系正确的是()
A.t1>t3>t2B.t1=t1′、t2=t2′、t3=t3′
C.t1′>t3′>t2′D.t1<t1′、t2<t2′、t3<t3′
解析:选ABC.由静止释放三个小球时,对a:hsin30°=12gsin30°t21,则t21=8hg;对b:h=12gt22,则t22=2hg;对c:hsin45°=12gsin45°T23,则t23=4hg,所以t1>t3>t2.当水平抛出三个小球时,小球b做平抛运动,小球a、c在斜面内做类平抛运动.沿斜面方向的运动同第一种情况,所以t1=t1′,t2=t2′,t3=t3′,故A、B、C正确.
2.质量为m的飞机以水平初速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图所示,求:
(1)飞机受到的升力大小;
(2)上升至h高度时飞机的速度.
解析:(1)飞机做类平抛运动,则:
水平方向l=v0t
竖直方向h=12at2
解得a=2v20hl2
对飞机由牛顿第二定律得
F-mg=ma
解得F=mg+2v20hl2
(2)竖直方向v2y=2ah
v=v20+v2y
解得v=v0ll2+4h2
设速度方向与初速度v0方向的夹角为θ,则:
tanθ=vyv0
解得θ=arctan2hl
答案:(1)mg+2v20hl2
(2)v0ll2+4h2,方向与v0的夹角为arctan2hl
考点三多体平抛问题
1.多体平抛运动问题是指多个物体在同一竖直平面内平抛时所涉及的问题.
2.三类常见的多体平抛运动
(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.
(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.
(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.
1.如图所示,在距水平地面分别为H和4H的高度处,同时将质量相同的a、b两小球以相同的初速度v0水平抛出,则以下判断正确的是()
A.a、b两小球同时落地
B.两小球落地速度的方向相同
C.a、b两小球水平位移之比为1∶2
D.a、b两小球水平位移之比为1∶4
解析:选C.由H=12gt2a,4H=12gt2b可得tb=2ta,A错误;由x=v0t可知,xa∶xb=1∶2,C正确,D错误;设落地时速度与水平方向夹角为θ,则由tanθ=gtv0可知,tanθa∶tanθb=1∶2,θa≠θb,B错误.
2.(20xx山东潍坊模拟)如图所示,半圆形容器竖直放置,从其圆心O点处分别以水平初速度v1、v2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A点和B点,己知OA与OB互相垂直,且OA与竖直方向成θ角,则两小球的初速度之比为()
A.tanθB.tanθ
C.tan3θD.tan2θ
解析:选C.由平抛运动规律得,水平方向Rsinθ=v1t1,Rcosθ=v2t2,竖直方向Rcosθ=12gt21,Rsinθ=12gt22,联立解得v1v2=tan3θ,选项C正确.
(1)物体做平抛运动的时间由物体被抛出点的高度决定,而物体的水平位移由物体被抛出点的高度和物体的初速度共同决定.
(2)两条平抛运动轨迹的相交处是两物体的可能相遇处,两物体要在此处相遇,必须同时到达此处.
考点四斜面上的平抛运动
与斜面相关的平抛运动,其特点是做平抛运动的物体落在斜面上,包括两种情况:
1.物体从空中抛出垂直落在斜面上;
2.从斜面上抛出落在斜面上.
在解答这类问题时,除了要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.两种模型对比如下:
方法内容斜面总结
分解速度水平:vx=v0
竖直:vy=gt
合速度:
v=v2x+v2y
分解速度,构建速度三角形
分解位移水平:x=v0t
竖直:y=12gt2
合位移:s=x2+y2
分解位移,构建位移三角形
题组一顺着斜面的平抛运动
1.跳台滑雪运动员的动作惊险而优美,其实滑雪运动可抽象为物体在斜坡上的平抛运动.如图所示,设可视为质点的滑雪运动员从倾角为θ的斜坡顶端P处,以初速度v0水平飞出,运动员最后又落到斜坡上A点处,AP之间距离为L,在空中运动时间为t,改变初速度v0的大小,L和t都随之改变.关于L、t与v0的关系,下列说法中正确的是()
A.L与v0成正比B.L与v0成反比
C.t与v0成正比D.t与v20成正比
解析:选C.因运动员落在斜面上,故其位移与水平方向的夹角就等于斜面的倾角θ,因此有tanθ=yx,其中y=12gt2,x=v0t,则t=2v0tanθg,L=xcosθ=v0tcosθ=2v20tanθgcosθ,故t与v0成正比,L与v20成正比,C正确.
2.(20xx怀化模拟)如图所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一个高h=1.4m、宽L=1.2m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2m的A点沿水平方向跳起离开斜面(竖直方向的速度变为零).己知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10m/s2.(已知sin53°=0.8,cos53°=0.6)求:
(1)运动员在斜面上滑行的加速度的大小;
(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;
(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度.
解析:(1)设运动员连同滑板的质量为m,运动员在斜面滑行的过程中,由牛顿第二定律得
mgsin53°-μmgcos53°=ma
解得a=gsin53°-μgcos53°=7.4m/s2
(2)运动员从斜面上起跳后,沿竖直方向做自由落体运动,则H=12gt2
解得t=0.8s
(3)为了不触及障碍物,运动员以速度v沿水平方向起跳后竖直下落高度为H-h时,他沿水平方向运动的距离至少为Htan53°+L,设这段时间为t′,则
H-h=12gt′2
Htan53°+L≤vt′
解得v≥6.0m/s,所以最小速度vmin=6.0m/s.
答案:(1)7.4m/s2(2)0.8s(3)6.0m/s
题组二对着斜面的平抛运动
3.(20xx吉林模拟)(多选)如图所示,A、D分别是斜面的顶端、底端,B、C是斜面上的两个点,AB=BC=CD,E点在D点的正上方,与A等高.从E点以一定的水平速度抛出质量相等的两个小球,球1落在B点,球2落在C点,关于球1和球2从抛出到落在斜面上的运动过程()
A.球1和球2运动的时间之比为2∶1
B.球1和球2动能增加量之比为1∶2
C.球1和球2抛出时初速度之比为22∶1
D.球1和球2运动时的加速度之比为1∶2
解析:选BC.因为AC=2AB,所以AC的高度差是AB高度差的2倍,根据h=12gt2得t=2hg,解得运动的时间比为1∶2,故A错误;根据动能定理得mgh=ΔEk,知球1和球2动能增加量之比为1∶2,故B正确;BD在水平方向上的分量是DC在水平方向分量的2倍,结合x=v0t,解得初速度之比为22∶1,故C正确;平抛运动的加速度均为g,两球的加速度相同,故D错误.
4.(20xx温州质检)如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)()
A.v0tanθgB.2v0tanθg
C.v0cotθgD.2v0cotθg
解析:选D.如图所示,要小球到达斜面的位移最小,则要求落点与抛出点的连线与斜面垂直,所以有tanθ=xy,而x=v0t,y=12gt2,解得t=2v0cotθg.
(1)物体的竖直位移与水平位移之比是同一个常数,这个常数等于斜面倾角的正切值;
(2)当物体的速度方向与斜面平行时,物体离斜面最远.
考点五平抛运动中的临界问题
[典例]如图所示,水平屋顶高H=5m,墙高h=3.2m,墙到房子的距离L=3m,墙外马路宽x=10m,小球从房顶水平飞出,落在墙外的马路上,g=10m/s2.求:
(1)小球离开屋顶时的速度v0的大小范围;
(2)小球落在马路上的最小速度.
解析(1)设小球恰好落到马路的右侧边缘时,水平初速度为v01,则
L+x=v01t1
竖直位移H=12gt21
联立解得v01=(L+x)g2H=13m/s
设小球恰好越过围墙的边缘时,水平初速度为v02,则
水平位移L=v02t2
竖直位移H-h=12gt22
联立解得v02=5m/s
所以小球抛出时的速度大小范围为5m/s≤v0≤13m/s.
(2)小球落在马路上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在马路上时,落地速度最小.
竖直方向v2y=2gH
又有vmin=v202+v2y
解得vmin=55m/s
答案(1)5m/s≤v0≤13m/s(2)55m/s
(1)在体育运动中,像乒乓球、排球、网球等都有中间网及边界问题,要求球既能过网,又不出边界,某物理量(尤其是球速)往往要有一定的范围限制,在这类问题中,确定临界状态,画好临界轨迹,是解决问题的关键点.
(2)分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件.
1.(多选)如图所示,一高度为h的光滑水平面与一倾角为θ的斜面连接,一小球以速度v从平面的右端P点向右水平抛出,则小球在空中运动的时间t()
A.一定与v的大小有关
B.一定与v的大小无关
C.当v大于gh2cotθ时,t与v无关
D.当v小于gh2cotθ时,t与v有关
解析:选CD.球有可能落在斜面上,也有可能落在水平面上,可用临界法求解,如果小球恰好落在斜面与水平面的交点处,则满足hcotθ=vt,h=12gt2,联立可得v=gh2cotθ.故当v大于gh2cotθ时,小球落在水平面上,t=2hg,与v无关;当v小于gh2cotθ时,小球落在斜面上,x=vt,y=12gt2,yx=tanθ,联立可得t=2vtanθg,即与v有关,故选项C、D正确.
2.一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是()
A.L12g6h<v<L1g6h
B.L14gh<v<4L21+L22g6h
C.L12g6h<v<124L21+L22g6h
D.L14gh<v<124L21+L22g6h
解析:选D.设以速率v1发射乒乓球,经过时间t1刚好落到球网正中间.
则竖直方向上有3h-h=12gt21,①
水平方向上有L12=v1t1.②
由①②两式可得v1=L14gh.
设以速率v2发射乒乓球,经过时间t2刚好落到球网右侧台面的两角处,
在竖直方向有3h=12gt22,③
在水平方向有L222+L21=v2t2.④
由③④两式可得v2=124L21+L22g6h.
则v的最大取值范围为v1<v<v2,故选项D正确.
课时规范训练
[基础巩固题组]
1.物体做平抛运动时,下列描述物体的速度变化量大小Δv随时间t变化的图象中,可能正确的是()
解析:选D.平抛运动是匀变速曲线运动,加速度为定值,由a=ΔvΔt知,D正确.
2.游乐场内两支玩具枪在同一位置先后沿水平方向各射出一颗子弹,打在远处的同一个靶上,A为甲枪子弹留下的弹孔,B为乙枪子弹留下的弹孔,两弹孔在竖直方向上相距高度为h,如图所示,不计空气阻力.关于两枪射出子弹的初速度大小,下列判断正确的是()
A.甲枪射出的子弹初速度较大
B.乙枪射出的子弹初速度较大
C.甲、乙两枪射出的子弹初速度一样大
D.无法比较甲、乙两枪射出的子弹初速度的大小
解析:选A.由题图可以看出,子弹射出后到打到靶上的过程中,竖直方向的位移关系是hBhA,由h=12gt2得tB>tA,由v=xt可以得出vA>vB,A正确.
3.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()
A.速度和加速度的方向都在不断改变
B.速度与加速度方向之间的夹角一直减小
C.在相等的时间间隔内,速率的改变量相等
D.在相等的时间间隔内,动能的改变量相等
解析:选B.小球做平抛运动,加速度为重力加速度,小球的速度大小和方向时刻变化,小球的加速度大小和方向均恒定,故A错误.速度与加速度的夹角的正切值tanθ=v0vy=v0gt,随着时间t的增大,夹角θ减小,故B正确.速度改变量Δv=gΔt,相等时间内的速度改变量相等,但速率(即速度的大小)的改变量不相等,故C错误.相等时间内动能的改变量取决于合力——重力做的功,由于相等时间内下落的高度越来越大,重力做的功越来越多,故动能的改变量越来越大,故D错误.
4.如图所示,某同学将一枚飞镖从高于靶心的位置水平投向竖直悬挂的靶盘,结果飞镖打在靶心的正下方.忽略飞镖运动过程中所受空气阻力,在其他条件不变的情况下,为使飞镖命中靶心,他在下次投掷时可以()
A.换用质量稍大些的飞镖
B.适当增大投飞镖的高度
C.到稍远些的地方投飞镖
D.适当减小投飞镖的初速度
解析:选B.飞镖做的是平抛运动,飞镖打在靶心的正下方说明飞镖竖直方向的位移太大,根据平抛运动的规律可得,水平方向上x=v0t,竖直方向上h=12gt2,所以要想减小飞镖竖直方向的位移,在水平位移不变的情况下,可以适当增大投飞镖的初速度来减小飞镖的运动时间,故D错误;初速度不变时,时间不变,适当增大投飞镖的高度,可以使飞镖命中靶心,飞镖的质量不影响平抛运动的规律,故A错误,B正确;在稍远些地方投飞镖,则运动时间变长,下落的高度变大,不会击中靶心,故C错误.
5.(多选)如图所示,相同的乒乓球1、2恰好在等高处水平越过球网,不计乒乓球的旋转和空气阻力,乒乓球自最高点到落台的过程中,下列说法正确的是()
A.过网时球1的速度小于球2的速度
B.球1的飞行时间大于球2的飞行时间
C.球1的速度变化率等于球2的速度变化率
D.落台时,球1的重力功率等于球2的重力功率
解析:选CD.由h=12gt2知两球运动时间相等,B错误;由于球1水平位移大,故水平速度大,A错误;两球都做平抛运动,故加速度等大,即速度变化率相等,C正确;由v2y=2gh可知落台时两球竖直速度等大,又因为重力等大,故落台瞬时功率等大,D正确.
6.如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg.不计空气阻力(sin37°=0.6,cos37°=0.8;g取10m/s2).求:
(1)A点与O点的距离L;
(2)运动员离开O点时的速度大小;
(3)运动员从O点飞出开始到离斜坡距离最远所用的时间.
解析:(1)运动员在竖直方向做自由落体运动,
有Lsin37°=12gt2,
L=gt22sin37°=75m.
(2)设运动员离开O点时的速度为v0,运动员在水平方向的分运动为匀速直线运动,有Lcos37°=v0t,
即v0=Lcos37°t=20m/s.
(3)运动员的平抛运动可分解为沿斜面方向的匀加速运动(初速度为v0cos37°、加速度为gsin37°)和垂直斜面方向的类竖直上抛运动(初速度为v0sin37°、加速度为gcos37°).
当垂直斜面方向的速度减为零时,运动员离斜坡最远,
有v0sin37°=gcos37°t,解得t=1.5s
答案:(1)75m(2)20m/s(3)1.5s
[综合应用题组]
7.如图所示,从A点由静止释放一弹性小球,一段时间后与固定斜面上B点发生碰撞,碰后小球速度大小不变,方向变为水平方向,又经过相同的时间落于地面上C点,已知地面上D点位于B点正下方,B、D间的距离为h,则()
A.A、B两点间的距离为h2
B.A、B两点间的距离为h3
C.C、D两点间的距离为2h
D.C、D两点间的距离为233h
解析:选C.AB段小球自由下落,BC段小球做平抛运动,两段时间相同,所以A、B两点间距离与B、D两点间距离相等,均为h,故A、B错误;BC段平抛初速度v=2gh,持续的时间t=2hg,所以C、D两点间距离x=vt=2h,故C正确,D错误.
8.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落在了倾角为30°的斜面上的C点,小球B恰好垂直打到斜面上,则v1、v2之比为()
A.1∶1B.2∶1
C.3∶2D.2∶3
解析:选C.小球A、B从同一高度平抛,到斜面上的C点经历的时间相等,设为t,由题意可得tan30°=12gt2v1t,tan30°=v2gt,解得v1∶v2=3∶2,C正确.
9.如图所示,一个小球从一斜面顶端分别以v10、v20、v30水平抛出,分别落在斜面上1、2、3点,落到斜面时竖直分速度分别是v1y、v2y、v3y,则()
A.v1yv10>v2yv20>v3yv30B.v1yv10<v2yv20<v3yv30
C.v1yv10=v2yv20=v3yv30D.条件不足,无法比较
解析:选C.设小球落到斜面时速度方向与水平方向的夹角为α,由tanα=vyv0=gtv0=gt2v0t=2yx=2tanθ,
故v1yv10=v2yv20=v3yv30,C正确.
10.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,则()
A.P→Q所用的时间t=22lgsinθ
B.P→Q所用的时间t=2lg
C.初速度v0=bgsinθ2l
D.初速度v0=bg2l
解析:选C.物体的加速度为:a=gsinθ.根据l=12at2,得:t=2lgsinθ,故A、B错误;初速度v0=bt=bgsinθ2l,故C正确,D错误.
11.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是()
A.球的速度v等于Lg2H
B.球从击出至落地所用时间为2Hg
C.球从击球点至落地点的位移等于L
D.球从击球点至落地点的位移与球的质量有关
解析:选AB.由平抛运动规律知,在水平方向上有L=vt,在竖直方向上有H=12gt2,联立解得t=2Hg,v=Lt=Lg2H,A、B正确;球从击球点至落地点的位移为x=H2+L2,与球的质量无关,C、D错误.
12.如图所示,倾角为37°的粗糙斜面的底端有一质量m=1kg的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25.现小滑块以某一初速度v从斜面底端上滑,同时在斜面底端正上方有一小球以v0水平抛出,经过0.4s,小
球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中.(已知sin37°=0.6,cos37°=0.8),g取10m/s2.求:
(1)小球水平抛出的速度v0;
(2)小滑块的初速度v.
解析:(1)设小球落入凹槽时竖直速度为vy,则
vy=gt=10×0.4m/s=4m/s
v0=vytan37°=3m/s.
(2)小球落入凹槽时的水平位移x=v0t=3×0.4m=1.2m
则滑块的位移为s=1.2cos37°m=1.5m
滑块上滑时,mgsin37°+μmgcos37°=ma
解得a=8m/s2
根据公式s=vt-12at2
解得:v=5.35m/s.
答案:(1)3m/s(2)5.35m/s
第3节圆周运动
一、描述圆周运动的物理量
1.线速度:描述物体圆周运动快慢.
v=ΔsΔt=2πrT.
2.角速度:描述物体转动快慢.
ω=ΔθΔt=2πT.
3.周期和频率:描述物体转动快慢.
T=2πrv,T=1f.
4.向心加速度:描述线速度方向变化快慢的物理量.
an=rω2=v2r=ωv=4π2T2r.
二、向心力
1.作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.
2.大小:F=mv2r=mω2r=m4π2rT2=mωv=4π2mf2r
3.方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.
三、圆周运动、向心运动和离心运动
1.匀速圆周运动与非匀速圆周运动
两种运动具体比较见下表:
项目匀速圆周运动非匀速圆周运动
定义线速度的大小不变的圆周运动线速度的大小不断变化的圆周运动
运动特点F向、a向、v均大小不变,方向变化,ω不变F向、a向、v大小和方向均发生变化,ω发生变化
向心力F向=F合由F合沿半径方向的分力提供
2.离心运动
(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.
(2)受力特点(如图所示)
①当F=mrω2时,物体做匀速圆周运动;
②当F=0时,物体沿切线方向飞出;
③当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.
④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.
[自我诊断]
1.判断正误
(1)匀速圆周运动是匀变速曲线运动.(×)
(2)物体做匀速圆周运动时,其角速度是不变的.(√)
(3)物体做匀速圆周运动时,其合外力是不变的.(×)
(4)匀速圆周运动的向心加速度与半径成反比.(×)
(5)匀速圆周运动的向心力是产生向心加速度的原因.(√)
(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.(√)
(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.(×)
(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.(×)
2.(多选)某质点绕圆轨道做匀速圆周运动,下列说法中正确的是()
A.因为该质点速度大小始终不变,所以它做的是匀速运动
B.该质点速度大小不变,但方向时刻改变,是变速运动
C.该质点速度大小不变,因而加速度为零,处于平衡状态
D.该质点做的是变速运动,具有加速度,故它所受合力不等于零
解析:选BD.匀速圆周运动的速度大小不变,但方向时刻改变,所以不是匀速运动,A错误,B正确;由于速度的方向改变,所以速度是变化的,一定存在加速度,不是处于平衡状态,合力不等于零,C错误,D正确.
3.(多选)一质点做匀速圆周运动,其线速度大小为4m/s,转动周期为2s,则()
A.角速度为0.5rad/s
B.转速为0.5r/s
C.轨迹半径为4πm
D.加速度大小为4πm/s2
解析:选BCD.角速度为ω=2πT=πrad/s,A错误;转速为n=ω2π=0.5r/s,B正确;半径r=vω=4πm,C正确;向心加速度大小为a=v2r=4πm/s2,D正确.
4.有一个惊险的杂技节目叫“飞车走壁”,杂技演员骑摩托车先在如图所示的大型圆筒底部做速度较小,半径较小的圆周运动,通过逐步加速,圆周运动的半径逐步增大,最后能以较大的速度在竖直筒壁上做匀速圆周运动,这时使车和人整体做匀速圆周运动的向心力是()
A.圆筒壁对车的静摩擦力
B.筒壁对车的弹力
C.摩托车本身的动力
D.重力和摩擦力的合力
解析:选B.在竖直筒壁上的摩托车只受三个力作用,其中竖直方向上重力与摩擦力是一对平衡力,水平方向上筒壁对车的弹力提供了车和人整体做匀速圆周运动的向心力,B正确.
考点一圆周运动的运动学问题
1.圆周运动各物理量间的关系
2.对公式v=ωr和a=v2r=ω2r的理解
(1)由v=ωr知,r一定时,v与ω成正比;ω一定时,v与r成正比;v一定时,ω与r成反比.
(2)由a=v2r=ω2r知,在v一定时,a与r成反比;在ω一定时,a与r成正比.
1.(20xx广州调研)如图所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点()
A.角速度之比ωA∶ωB=2∶1
B.角速度之比ωA∶ωB=1∶2
C.线速度之比vA∶vB=2∶1
D.线速度之比vA∶vB=1∶2
解析:选D.板上A、B两点的角速度相等,角速度之比ωA∶ωB=1∶1,选项A、B错误;线速度v=ωr,线速度之比vA∶vB=1∶2,选项C错误,D正确.
2.(多选)如图所示为一链条传动装置的示意图.已知主动轮是逆时针转动的,转速为n,主动轮和从动轮的齿数比为k,以下说法中正确的是()
A.从动轮是顺时针转动的
B.主动轮和从动轮边缘的线速度大小相等
C.从动轮的转速为nk
D.从动轮的转速为nk
解析:选BC.主动轮逆时针转动,带动从动轮也逆时针转动,用链条传动,两轮边缘线速度大小相等,A错误,B正确;由r主:r从=k,2πnr主=2πn从r从可得n从=nk,C正确,D错误.
3.(20xx桂林模拟)如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()
A.线速度大小之比为3∶2∶2
B.角速度之比为3∶3∶2
C.转速之比为2∶3∶2
D.向心加速度大小之比为9∶6∶4
解析:选D.A、B轮摩擦传动,故va=vb,ωaRA=ωbRB,ωa∶ωb=3∶2;B、C同轴,故ωb=ωc,vbRB=vcRC,vb∶vc=3∶2,因此va∶vb∶vc=3∶3∶2,ωa∶ωb∶ωc=3∶2∶2,故A、B错误.转速之比等于角速度之比,故C错误.由a=ωv得:aa∶ab∶ac=9∶6∶4,D正确.
常见的三种传动方式及特点
(1)皮带传动:如图1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB.
(2)摩擦传动:如图2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.
(3)同轴传动:如图2乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.
考点二圆周运动的动力学问题
1.向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
2.向心力的确定
(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.
(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.
3.解决动力学问题要注意三个方面的分析
(1)几何关系的分析,目的是确定圆周运动的圆心、半径等.
(2)运动分析,目的是表示出物体做圆周运动所需要的向心力.
(3)受力分析,目的是利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.
1.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看做是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()
A.gRhLB.gRhd
C.gRLhD.gRdh
解析:选B.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F向=mgtanθ.根据牛顿第二定律:F向=mv2R,tanθ=hd,解得汽车转弯时的车速v=gRhd,B对.
2.(20xx江西九校联考)(多选)如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P′位置),两次金属块Q都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断中正确的是()
A.细线所受的拉力变小
B.小球P运动的角速度变大
C.Q受到桌面的静摩擦力变大
D.Q受到桌面的支持力变大
解析:选BC.金属块Q在桌面上保持静止,根据平衡条件知,Q受到桌面的支持力等于其重力,保持不变,故D错误.设细线与竖直方向的夹角为θ,细线的拉力大小为FT,细线的长度为L,P球做匀速圆周运动时,由重力和细线拉力的合力提供向心力,如图,则有FT=mgcosθ,Fn=mgtanθ=mω2Lsinθ,得角速度ω=gLcosθ,使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cosθ减小,则得到细线拉力FT增大,角速度增大,A错误、B正确.对Q,由平衡条件知,Q受到桌面的静摩擦力变大,故C正确.<M.Jab88.COM/p>

精选阅读

20xx高考物理《万有引力与航天》材料分析


作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师在教学期间更好的掌握节奏。你知道怎么写具体的教案内容吗?为此,小编从网络上为大家精心整理了《20xx高考物理《万有引力与航天》材料分析》,仅供您在工作和学习中参考。

20xx高考物理《万有引力与航天》材料分析

第4节万有引力与航天
考点一|开普勒行星运动定律

1.第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在这些椭圆的一个焦点上.
2.第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.
3.第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是一个对所有行星都相同的常量。

1.(20xx·余姚调研)关于太阳系中各行星的轨道,以下说法中正确的是()
A.所有行星绕太阳运动的轨道都是椭圆
B.有的行星绕太阳运动的轨道是圆
C.不同行星绕太阳运动的椭圆轨道的半长轴是相同的
D.不同的行星绕太阳运动的轨道都相同
A[八大行星的轨道都是椭圆,A正确,B错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C、D错误.]
2.关于行星的运动,下列说法中不正确的是()
A.关于行星的运动,早期有“地心说”与“日心说”之争,而“地心说”容易被人们所接受的原因之一是由于相对运动使得人们观察到太阳东升西落
B.所有行星围绕太阳运动的轨道都是椭圆,且近地点速度小,远地点速度大
C.开普勒第三定律=k,式中k的值仅与中心天体的质量有关
D.开普勒三定律也适用于其他星系的行星运动
B[根据开普勒第二定律可以推断出近地点速度大,远地点速度小,故选项B错误.]
3.(20xx·温州模拟)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
C[太阳位于木星椭圆运行轨道的一个焦点上,不同的行星运行在不同的椭圆轨道上,其运行周期和速度均不相同,不同的行星相同时间内,与太阳连线扫过的面积不相等,A、B、D均错误;由开普勒第三定律可知,C正确.]

考点二|万有引力定律及应用

1.万有引力定律
(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比.
(2)表达式:F=G
G为引力常量:G=6.67×10-11N·m2/kg2.
(3)适用条件
①公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点.
②质量分布均匀的球体可视为质点,r是两球心间的距离.2.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
G=man=m=mω2r=m.
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).3.天体质量和密度的估算
(1)利用天体表面的重力加速度g和天体半径R.
由于G=mg,故天体质量M=,
天体密度ρ===.
(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.
①由万有引力等于向心力,即G=mr,得出中心天体质量M=;
②若已知天体半径R,则天体的平均密度
ρ===.

(20xx·浙江10月学考)如图441所示,“天宫二号”在距离地面393km的近圆轨道运行,已知万有引力常量G=6.67×10-11N·m2/kg2,地球质量M=6.0×1024kg,地球半径R=6.4×103km.由以上数据可估算()

图441
A.“天宫二号”质量
B.“天宫二号”运行速度
C.“天宫二号”受到的向心力
D.地球对“天宫二号”的引力
B[根据万有引力定律,F向=F万=G=m,其中m为卫星质量,R为轨道半径,即地球半径与离地高度之和,则已知G、M、R,可得到运行速度v,无法得到卫星质量m,亦无法求得F向、F万.故选B.]

1.嫦娥三号远离地球飞近月球的过程中,地球和月球对它的万有引力F1、F2的大小变化情况是()
A.F1、F2均减小
B.F1、F2均增大
C.F1减小、F2增大
D.F1增大、F2减小
C[根据万有引力定律F=G,可知F1减小、F2增大,故选C.]
2.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心之间的距离之比为()
A.1∶9B.9∶1
C.1∶10D.10∶1
C[设月球质量为m,则地球质量为81m,地月间距离为r,飞行器质量为m0,当飞行器距月球为r′时,地球对它的引力等于月球对它的引力,则G=G,所以=9,r=10r′,r′∶r=1∶10,故选项C正确.]
3.20xx年12月17日,我国发射了首颗探测“暗物质”的空间科学卫星“悟空”,使我国的空间科学探测进入了一个新阶段.已知“悟空”在距地面为h的高空绕地球做匀速圆周运动,地球质量为M,地球半径为R,引力常量为G,则可以求出()
A.“悟空”的质量
B.“悟空”的密度
C.“悟空”的线速度大小
D.地球对“悟空”的万有引力
C[根据万有引力充当向心力G=m,可求得“悟空”的线速度v=,因无法求出“悟空”的质量,从而无法求出“悟空”的密度和地球对“悟空”的万有引力,选项C正确,A、B、D错误.]
4.对于万有引力定律的表达式,下列说法正确的是()
A.G是引力常量,是人为规定的
B.当r等于零时,万有引力为无穷大
C.两物体受到的引力总是大小相等,与两物体质量是否相等无关
D.r是两物体间最近的距离
C[引力常量G的值是卡文迪许在实验室里用实验测定的,而不是人为规定的,故A错误;当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用,故B错误;力是物体间的相互作用,万有引力同样适用于牛顿第三定律,即两物体受到的引力总是大小相等,与两物体质量是否相等无关,故C正确;r是两质点间的距离,质量分布均匀的球体可视为质点,此时r是两球心间的距离,故D错误.]
5.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕.“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的,该中心恒星与太阳的质量比约为()
A.B.1
C.5D.10
B[根据万有引力提供向心力,有G=mr,可得M=,所以恒星质量与太阳质量之比为==3×2≈1,故选项B正确.]

考点三|宇宙航行、经典力学的局限性

1.卫星的各物理量随轨道半径变化的规律2.三个宇宙速度
(1)第一宇宙速度
v1=7.9km/s,卫星在地球表面附近绕地球做匀速圆周运动的速度,又称环绕速度.
(2)第二宇宙速度
v2=11.2km/s,使卫星挣脱地球引力束缚的最小地面发射速度,又称脱离速度.
(3)第三宇宙速度
v3=16.7km/s,使卫星挣脱太阳引力束缚的最小地面发射速度,也叫逃逸速度.
3.第一宇宙速度的推导
方法一:由G=m得v1==7.9×103m/s.
方法二:由mg=m得
v1==7.9×103m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2π=5075s≈85min.
4.宇宙速度与运动轨迹的关系
(1)v发=7.9km/s时,卫星绕地球做匀速圆周运动.
(2)7.9km/sR,所以v7.9km/s,C正确.]
2.关于地球的第一宇宙速度,下列表述正确的是()
A.第一宇宙速度又叫环绕速度
B.第一宇宙速度又叫脱离速度
C.第一宇宙速度跟地球的质量无关
D.第一宇宙速度跟地球的半径无关
A[第一宇宙速度又叫环绕速度,故A正确,B错误;根据定义有G=m,得v=,其中,M为地球质量,R为地球半径,故C、D错误.]
3.某行星有甲、乙两颗卫星,它们的轨道均为圆形,甲的轨道半径为R1,乙的轨道半径为R2,R2R1.根据以上信息可知()
A.甲的质量大于乙的质量
B.甲的周期大于乙的周期
C.甲的速率大于乙的速率
D.甲所受行星的引力大于乙所受行星的引力
C[轨道半径越小,向心加速度、线速度、角速度越大,周期越小,B错,C对;卫星质量不能比较,A错;因为两卫星质量不知道,万有引力也不能比较,D错.]
4.我国成功发射的“神舟”号载人宇宙飞船和人造地球同步通信卫星都绕地球做匀速圆周运动,已知飞船的轨道半径小于同步卫星的轨道半径。则可判定()
A.飞船的运行周期小于同步卫星的运行周期
B.飞船的线速度小于同步卫星的线速度
C.飞船的角速度小于同步卫星的角速度
D.飞船的向心加速度小于同步卫星的向心加速度
A[该卫星的质量为m,轨道半径为r,周期T,线速度为v,角速度为ω,向心加速度为an,地球的质量为M,由万有引力定律得G=m=m=mω2r=man,故T=2π,v=,ω=,an=,因为飞船的轨道半径小于同步卫星的轨道半径,所以飞船的运行周期小于同步卫星的运行周期,飞船的线速度大于同步卫星的线速度,飞船的角速度大于同步卫星的角速度,飞船的向心加速度大于同步卫星的向心加速度,选项A正确,B、C、D错误.]
5.如图444所示,a、b、c三颗卫星在各自的轨道上运行,轨道半径rambmc
D.三个卫星的运行周期为Ta

20xx高三物理复习知识点:曲线运动、万有引力


20xx高三物理复习知识点:曲线运动、万有引力

1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

20xx高考物理大一轮复习:第10章-电磁感应(10份打包有课件)


第1节电磁感应现象楞次定律
一、磁通量
1.概念:磁感应强度B与面积S的乘积.
2.计算
(1)公式:Φ=BS.
(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.
(3)单位:韦伯(Wb),1Wb=1_Tm2.
3.意义:穿过某一面积的磁感线的条数.
4.标矢性:磁通量是标量,但有正、负.
二、电磁感应
1.电磁感应现象
当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.
2.产生感应电动势和感应电流的条件
(1)产生感应电动势的条件
无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,回路中就有感应电动势.产生感应电动势的那部分导体相当于电源.
(2)产生感应电流的条件
①电路闭合.②磁通量变化.
三、感应电流方向的判断
1.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.如右图所示.
2.楞次定律
内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.
[自我诊断]
1.判断正误
(1)磁通量虽然是标量,但有正、负之分.(√)
(2)当导体切割磁感线运动时,导体中一定产生感应电流.(×)
(3)穿过线圈的磁通量与线圈的匝数无关.(√)
(4)电路中磁通量发生变化时,就一定会产生感应电流.(×)
(5)感应电流的磁场总是与原磁场方向相反.(×)
(6)楞次定律和右手定则都可以判断感应电流的方向,二者没什么区别.(×)
(7)回路不闭合时,穿过回路的磁通量发生变化也会产生“阻碍”作用.(×)
2.如图所示,匀强磁场中有一个矩形闭合导线框.在下列四种情况下,线框中会产生感应电流的是()
A.如图甲所示,保持线框平面始终与磁感线平行,线框在磁场中左右运动
B.如图乙所示,保持线框平面始终与磁感线平行,线框在磁场中上下运动
C.如图丙所示,线框绕位于线框平面内且与磁感线垂直的轴线AB转动
D.如图丁所示,线框绕位于线框平面内且与磁感线平行的轴线CD转动
解析:选C.保持线框平面始终与磁感线平行,线框在磁场中左右运动,磁通量一直为零,故磁通量不变,无感应电流,选项A错误;保持线框平面始终与磁感线平行,线框在磁场中上下运动,磁通量一直为零,故磁通量不变,无感应电流,选项B错误;线框绕位于线框平面内且与磁感线垂直的轴线AB转动,磁通量周期性地改变,故一定有感应电流,故选项C正确;线框绕位于线框平面内且与磁感线平行的轴线CD转动,磁通量一直为零,故磁通量不变,无感应电流,选项D错误.
3.如图,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是()
A.总是顺时针
B.总是逆时针
C.先顺时针后逆时针
D.先逆时针后顺时针
解析:选C.磁铁从圆环中穿过且不与圆环接触,则导体环中,先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流方向先顺时针后逆时针,选项C正确.
4.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()
A.始终是由P→Q
B.始终是由Q→P
C.先是由P→Q,后是由Q→P
D.先是由Q→P,后是由P→Q
解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.
考点一电磁感应现象的判断
1.穿过闭合电路的磁通量发生变化的四种情况
(1)磁感应强度B不变,线圈面积S发生变化.
(2)线圈面积S不变,磁感应强度B发生变化.
(3)线圈面积S变化,磁感应强度B也变化,它们的乘积BS发生变化.
(4)线圈面积S不变,磁感应强度B也不变,但二者之间夹角发生变化.
2.判断电磁感应现象能否发生的一般流程:
1.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()
A.ab向右运动,同时使θ减小
B.使磁感应强度B减小,θ角同时也减小
C.ab向左运动,同时增大磁感应强度B
D.ab向右运动,同时增大磁感应强度B和θ角(0°θ90°)
解析:选A.本题中引起磁通量变化都有两个方面,面积的变化和夹角改变,向右运动的同时θ减小都会使磁通量变大,所以A项正确.
2.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示连接.下列说法中正确的是()
A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转
B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转
C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度
D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转
解析:选A.只要闭合回路磁通量发生变化就会产生感应电流,故A正确,B错误;开关闭合后,只要滑片P滑动就会产生感应电流,故C、D错误.
3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()
A.圆盘上产生了感应电动势
B.圆盘内的涡电流产生的磁场导致磁针转动
C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化
D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动
解析:选AB.A.当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确;
B.如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;
C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;
D.圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.
确定磁通量变化的两种方法
(1)通过对穿过回路磁感线条数的分析和计算,可以确定磁通量是否变化.
(2)依据公式Φ=BSsinθ(θ是B与S的夹角)确定磁通量与哪些因素有关.
考点二楞次定律的理解及应用
1.判断感应电流方向的两种方法
方法一用楞次定律判断
方法二用右手定则判断
该方法适用于切割磁感线产生的感应电流.判断时注意掌心、拇指、四指的方向:
(1)掌心——磁感线垂直穿入;
(2)拇指——指向导体运动的方向;
(3)四指——指向感应电流的方向.
2.楞次定律推论的应用
楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下:

内容例证
阻碍原磁通量变化——“增反减同”

阻碍相对运动——“来拒去留”

使回路面积有扩大或缩小的趋势——“增缩减扩”
B减小,线圈扩张

阻碍原电流的变化——“增反减同”

考向1:应用楞次定律判感应电流方向
[典例1]如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()
A.a→b→c→d→a
B.d→c→b→a→d
C.先是d→c→b→a→d,后是a→b→c→d→a
D.先是a→b→c→d→a,后是d→c→b→a→d
解析由楞次定律可知,在线框从右侧摆动到O点正下方的过程中,向上的磁通量在减小,故感应电流的方向沿d→c→b→a→d;同理,线框从O点正下方向左侧摆动的过程中,电流方向沿d→c→b→a→d,B正确.
答案B
考向2:右手定则判感应电流的方向
[典例2]如图所示,MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,垂直纸面向外的匀强磁场垂直穿过MN、GH所在的平面,则()
A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向为a→b→d→c→a
B.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向为a→c→d→b→a
C.若ab向左、cd向右同时运动,则abdc回路中的电流为零
D.若ab、cd都向右运动,且两杆速度vcd>vab,则abdc回路有电流,电流方向为a→c→d→b→a
解析由右手定则可判断出A项做法使回路产生顺时针方向的电流,故A项错.若ab、cd同向运动且速度大小相同,ab、cd所围面积不变,磁通量不变,故不产生感应电流,故B项错.若ab向左,cd向右,则abdc回路中有顺时针方向的电流,故C项错.若ab、cd都向右运动,且两杆速度vcd>vab,则ab、cd所围面积发生变化,磁通量也发生变化,由楞次定律可判断出,abdc回路中产生顺时针方向的电流,故D项正确.
答案D
考向3:“阻碍法”的应用
[典例3](20xx东北三省五校联考)如图,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()
A.线圈a中将产生俯视顺时针方向的感应电流
B.穿过线圈a的磁通量减少
C.线圈a有扩张的趋势
D.线圈a对水平桌面的压力FN将增大
解析当滑片P向下移动时滑动变阻器连入电路的电阻减小,由闭合电路欧姆定律可知通过b的电流增大,从而判断出穿过线圈a的磁通量增加,方向向下,选项B错误;根据楞次定律即可判断出线圈a中感应电流方向俯视应为逆时针,选项A错误;再根据楞次定律“阻碍”含义的推广,线圈a应有收缩或远离b的趋势来阻碍磁通量的增加,所以C错误,D正确.
答案D
感应电流方向判断的两点注意
(1)楞次定律可应用于磁通量变化引起感应电流的各种情况(包括一部分导体切割磁感线运动的情况).
(2)右手定则只适用于一段导体在磁场中做切割磁感线运动的情景,是楞次定律的一种特殊情况.
考点三“三定则、一定律”的理解及应用
1.“三个定则、一个定律”的应用对比:
名称基本现象因果关系应用的定则或定律
电流的磁效应运动电荷、电流产生磁场因电生磁安培定则
洛伦兹力、安培力磁场对运动电荷、电流有作用力因电受力左手定则
电磁感应部分导体做切割磁感线运动因动生电右手定则
闭合回路磁通量变化因磁生电楞次定律
2.三个定则、一个定律”的相互联系:
(1)应用楞次定律时,一般要用到安培定则.
(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定.
1.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab的运动情况是(两线圈共面放置)()
A.向右匀速运动B.向左加速运动
C.向右减速运动D.向右加速运动
解析:选BC.欲使N产生顺时针方向的感应电流,感应电流的磁场方向垂直纸面向里,由楞次定律可知有两种情况:一是M中有沿顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小;二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大.因此对前者应使ab向右减速运动;对于后者,则应使ab向左加速运动.
2.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一如图所示的闭合电路,当PQ在一外力的作用下运动时,MN向右运动,则PQ所做的运动可能是()
A.向右加速运动
B.向左加速运动
C.向右减速运动
D.向左减速运动
解析:选BC.MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里――→左手定则MN中的感应电流由M→N――→安培定则L1中感应电流的磁场方向向上――→楞次定律L2中磁场方向向上减弱L2中磁场方向向下增强.若L2中磁场方向向上减弱――→安培定则PQ中电流为Q→P且减小――→右手定则向右减速运动;若L2中磁场方向向下增强――→安培定则PQ中电流为P→Q且增大――→右手定则向左加速运动.
3.(多选)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处在垂直于纸面向外的匀强磁场中.下列说法中正确的是()
A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势
C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点
解析:选BD.当金属棒向右匀速运动而切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向由a→b.根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流,A错误,B正确.当ab向右做加速运动时,由右手定则可推断φbφa,电流沿逆时针方向.
又由E=BLv可知ab导体两端的E不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边电路的线圈中的向上的磁通量不断增加.由楞次定律可判断右边电路的感应电流方向应沿逆时针,而在右线圈组成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上.把这个线圈看作电源,由于电流是从c沿内电路(即右线圈)流向d,所以d点电势高于c点,C错误,D正确.
左、右手定则区分技巧
(1)抓住“因果关系”:“因动而电”——用右手;“因电而动”——用左手.
(2)形象记忆:把两个定则简单地总结为“通电受力用左手,运动生电用右手”.“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手.
课时规范训练
[基础巩固题组]
1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()
A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化
B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化
C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化
D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化
解析:选D.产生感应电流的条件为:闭合回路内磁通量发生变化.A项中,线圈绕在磁铁上,磁通量未变,不会产生感应电流,A错误.同理B错误.C项中,往线圈中插入条形磁铁的瞬间,线圈中磁通量发生变化,此时线圈中将产生感应电流,但插入后磁通量不再变化,无感应电流,故到相邻房间观察时无示数,C错误.D项中,在线圈通电或断电的瞬间,磁通量发生变化,产生感应电流,D正确.
2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生图中箭头方向的瞬时感应电流,下列方法可行的是()
A.使匀强磁场均匀增大
B.使圆环绕水平轴ab如图转动30°
C.使圆环绕水平轴cd如图转动30°
D.保持圆环水平并使其绕过圆心的竖直轴转动
解析:选A.根据右手定则,圆环中感应电流产生的磁场竖直向下与原磁场方向相反,根据楞次定律,说明圆环磁通量在增大.磁场增强则磁通量增大,A正确.使圆环绕水平轴ab或cd转动30°,圆环在垂直磁场方向上的投影面积减小,磁通量减小,只会产生与图示方向相反的感应电流,B、C错误.保持圆环水平并使其绕过圆心的竖直轴转动,圆环仍与磁场垂直,磁通量不变,不会产生感应电流,D错误.
3.如图甲所示,在同一平面内有两个相互绝缘的金属圆环A、B,圆环A平分圆环B为面积相等的两部分,当圆环A中的电流如图乙所示变化时,甲图中A环所示的电流方向为正,下列说法正确的是()
A.B中始终没有感应电流
B.B中有顺时针方向的感应电流
C.B中有逆时针方向的感应电流
D.B中先有顺时针方向的感应电流,后有逆时针方向的感应电流
解析:选B.由于圆环A中的电流发生了变化,故圆环B中一定有感应电流产生,由楞次定律判定B中有顺时针方向的感应电流,故选项B正确.
4.(多选)如图,两同心圆环A、B置于同一水平面上,其中B为均匀带负电绝缘环,A为导体环.当B绕轴心顺时针转动且转速增大时,下列说法正确的是()
A.A中产生逆时针的感应电流
B.A中产生顺时针的感应电流
C.A具有收缩的趋势
D.A具有扩展的趋势
解析:选BD.由图可知,B为均匀带负电绝缘环,B中电流为逆时针方向,由右手螺旋定则可知,电流的磁场垂直纸面向外且逐渐增大;由楞次定律可知,磁场增大时,感应电流的磁场与原磁场的方向相反,所以感应电流的磁场的方向垂直纸面向里,A中感应电流的方向为顺时针方向,故A错误,B正确;B环外的磁场的方向与B环内的磁场的方向相反,当B环内的磁场增强时,A环具有面积扩展的趋势,故C错误,D正确.
5.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜ρ铝.闭合开关S的瞬间()
A.从左侧看环中感应电流沿顺时针方向
B.铜环受到的安培力大于铝环受到的安培力
C.若将环放置在线圈右方,环将向左运动
D.电池正负极调换后,金属环不能向左弹射
解析:选AB.线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,环中感应电流由左侧看为顺时针,A正确.由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,B正确.若将环放在线圈右方,根据“来拒去留”可得,环将向右运动,C错误.电池正负极调换后,金属环受力仍向左,故仍将向左弹出,D错误.
6.多年来物理学家一直设想用实验证实自然界中存在“磁单极子”.磁单极子是指只有S极或只有N极的磁性物质,其磁感线分布类似于点电荷的电场线分布.如图所示的实验就是用于检测磁单极子的实验之一,abcd为用超导材料围成的闭合回路.设想有一个N极磁单极子沿abcd轴线从左向右穿过超导回路,那么在回路中可能发生的现象是()
A.回路中无感应电流
B.回路中形成持续的abcda流向的感应电流
C.回路中形成持续的adcba流向的感应电流
D.回路中形成先abcda流向后adcba流向的感应电流
解析:选C.N极磁单极子的磁感线分布类似于正点电荷的电场线分布,由楞次定律知,回路中形成方向沿adcba流向的感应电流,由于回路为超导材料做成的,电阻为零,故感应电流不会消失,C项正确.
[综合应用题组]
7.(多选)如图所示,一接有电压表的矩形闭合线圈ABCD向右匀速穿过匀强磁场的过程中,下列说法正确的是()
A.线圈中有感应电动势,有感应电流
B.线圈中有感应电动势,无感应电流
C.AB边两端有电压,且电压表有示数
D.AB边两端有电压,但电压表无示数
解析:选BD.由于通过回路的磁通量不变,故回路中无感应电流产生,A项错;由欧姆定律知电压表示数U=IRV=0,C项错;由于AB棒切割磁感线AB两端有电压,B、D项正确.
8.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两条可自由滑动的导体棒ab和cd,当载流直导线中的电流逐渐增强时,导体棒ab和cd的运动情况是()
A.一起向左运动
B.一起向右运动
C.ab和cd相向运动,相互靠近
D.ab和cd相背运动,相互远离
解析:选C.电流增强时,电流在abdc回路中产生的垂直纸面向里的磁场增强,回路中磁通量增大,根据楞次定律可知回路要减小面积以阻碍磁通量的增加,因此,两导体棒要相向运动,相互靠近.选项C正确.
9.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是()
A.先顺时针后逆时针
B.先逆时针后顺时针
C.先顺时针后逆时针,然后再顺时针
D.先逆时针后顺时针,然后再逆时针
解析:选D.如图为地下通电直导线产生的磁场的正视图,当线圈在通电直导线正上方的左侧时由楞次定律知,线圈中感应电流方向为逆时针,同理在右侧也为逆时针,当线圈一部分在左侧一部分在右侧时为顺时针,故D正确.
10.(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()
A.处于磁场中的圆盘部分,靠近圆心处电势高
B.所加磁场越强越易使圆盘停止转动
C.若所加磁场反向,圆盘将加速转动
D.若所加磁场穿过整个圆盘,圆盘将匀速转动
解析:选ABD.设想把金属圆盘切割成无数根导体棒,导体棒切割磁感线产生感应电动势、感应电流,根据右手定则可知,靠近圆心处的电势高,选项A正确;根据E=BLv可知,所加磁场B越强,感应电动势E越大,感应电流越大,因F=BIL,所以安培力也越大,安培力对圆盘的转动阻碍作用越强,选项B正确;若所加磁场反向,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍将减速运动,选项C错误;若所加磁场穿过整个圆盘,圆盘的半径切割磁感线,产生感应电动势,但圆盘内没有涡流,故没有安培力,不消耗机械能,所以圆盘匀速转动,选项D正确.
11.(多选)如图所示,铁芯上有两个线圈A和B.线圈A跟电源相连,LED(发光二极管,具有单向导电性)M和N并联后接在线圈B两端.图中所有元件均正常,则()
A.S闭合瞬间,A中有感应电动势
B.S断开瞬间,A中有感应电动势
C.S闭合瞬间,M亮一下,N不亮
D.S断开瞬间,M和N二者均不亮
解析:选ABC.闭合开关的瞬间,穿过线圈A的磁通量增加,线圈A中将产生自感电动势,故A正确.开关断开的瞬间,穿过线圈A的磁通量减小,线圈A中将产生自感电动势,故B正确.闭合开关的瞬间,穿过线圈A的磁通量增加,根据安培定则可知,A中产生的磁场的方向向上,穿过B的磁通量向上增大时,根据楞次定律可知,B中感应电流的磁场的方向向下,根据安培定则可知B中感应电流的方向向下,所以线圈下端的电势高,电流能通过二极管M,不能通过二极管N,故C正确.结合C的分析可知,S断开瞬间,穿过线圈B的磁通量减小,产生感应电流的方向与C中感应电流的方向相反,所以感应电流能通过二极管N,不能通过二极管M,故D错误.
12.经过不懈的努力,法拉第终于在1831年8月29日发现了“磁生电”的现象,他把两个线圈绕在同一个软铁环上(如图所示),一个线圈A连接电池与开关,另一线圈B闭合并在其中一段直导线附近平行放置小磁针.法拉第可观察到的现象有()
A.当合上开关,A线圈接通电流瞬间,小磁针偏转一下,随即复原
B.只要A线圈中有电流,小磁针就会发生偏转
C.A线圈接通后其电流越大,小磁针偏转角度也越大
D.当开关打开,A线圈电流中断瞬间,小磁针会出现与A线圈接通电流瞬间完全相同的偏转
解析:选A.当合上开关,A线圈接通电流瞬间,穿过A的磁通量发生变化,使得穿过B的磁通量也变化,所以在B中产生感生电流,电流稳定后穿过A、B的磁通量不再变化,所以B中不再有感应电流,即小磁针偏转一下,随即复原,选项A正确;A线圈中有电流,但是如果电流大小不变,则在B中不会产生感应电流,即小磁针就不会发生偏转,选项B错误;B线圈中的感应电流大小与A中电流的变化率有关,与A中电流大小无关,故C错误;当开关打开,A线圈电流中断瞬间,由于穿过B的磁通量减小,则在B中产生的电流方向与A线圈接通电流瞬间产生的电流方向相反,所以小磁针会出现与A线圈接通电流瞬间完全相反的偏转,选项D错误.
13.(多选)某同学将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边.当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致.经过操作,该同学在计算机上得到了如图乙所示的图象.该同学猜测磁感应强度传感器内有一线圈,当测得磁感应强度最大时就是穿过线圈的磁通量最大时.按照这种猜测()
A.在t=0.1s时刻,线圈内产生的感应电流的方向发生了变化
B.在t=0.15s时刻,线圈内产生的感应电流的方向发生了变化
C.在t=0.1s时刻,线圈内产生的感应电流的大小达到了最大值
D.在t=0.15s时刻,线圈内产生的感应电流的大小达到了最大值
解析:选AC.题图乙中斜率既能反映线圈内产生的感应电流的方向变化,又能反映感应电流的大小变化.t=0.1s时刻,图线斜率最大,意味着磁通量的变化率最大,感应电动势最大,线圈内产生的感应电流的大小达到了最大值,t=0.1s时刻前后的图线斜率一正一负,说明产生的感应电流的方向发生了变化,所以A、C正确;同理可知t=0.15s时刻,图线斜率不是最大值,且该时刻前后图线斜率全为负值,说明线圈内产生的感应电流的方向没有变化,而且大小并未达到最大值,选项B、D错误.
14.磁感应强度为B的匀强磁场仅存在于边长为2l的正方形范围内,有一个电阻为R、边长为l的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图所示,从ab进入磁场时开始计时,到线框离开磁场为止.
(1)画出穿过线框的磁通量随时间变化的图象;
(2)判断线框中有无感应电流.若有,说明感应电流的方向.
解析:(1)当ab边进入磁场时,穿过线框的磁通量均匀增加,在t1=lv时线框全部进入磁场,磁通量Φ=Bl2不变化;当在t2=2lv时,ab边离开磁场,穿过线框的磁通量均匀减少到零,所以该过程的Φ-t图象如图所示.
(2)ab边进入磁场时有感应电流,根据右手定则可判知感应电流方向为逆时针;ab边离开磁场时有感应电流,根据右手定则可判知感应电流方向为顺时针;中间过程t1~t2磁通量不变化,没有感应电流.
答案:见解析
第2节法拉第电磁感应定律自感和涡流
一、法拉第电磁感应定律
1.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E=nΔΦΔt,n为线圈匝数.
2.导体切割磁感线的情形
(1)若B、l、v相互垂直,则E=Blv.
(2)E=Blvsinθ,θ为运动方向与磁感线方向的夹角.
(3)导体棒在磁场中转动:导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Blv-=12Bl2ω平均速度取中点位置线速度12lω.
二、自感和涡流
1.自感现象:当导体中电流发生变化时,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象叫自感现象.
2.自感电动势:在自感现象中产生的感应电动势E=LΔIΔt,其中L叫自感系数,它与线圈的大小、形状、圈数以及是否有铁芯有关,自感系数的单位是亨利(H),1mH=10-3H,1μH=10-6H.
3.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的漩涡状的感应电流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.
[自我诊断]
1.判断正误
(1)线圈中磁通量越大,产生的感应电动势越大.(×)
(2)线圈中磁通量变化越大,产生的感应电动势越大.(×)
(3)线圈中磁通量变化越快,产生的感应电动势越大.(√)
(4)线圈中的电流越大,自感系数也越大.(×)
(5)磁场相对导体棒运动时,导体棒中也能产生感应电动势.(√)
(6)对于同一线圈,电流变化越快,线圈中的自感电动势越大.(√)
2.如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为Ea和Eb.不考虑两圆环间的相互影响.下列说法正确的是()
A.Ea∶Eb=4∶1,感应电流均沿逆时针方向
B.Ea∶Eb=4∶1,感应电流均沿顺时针方向
C.Ea∶Eb=2∶1,感应电流均沿逆时针方向
D.Ea∶Eb=2∶1,感应电流均沿顺时针方向
解析:选B.由题意可知ΔBΔt=k,导体圆环中产生的感应电动势E=ΔΦΔt=ΔBΔtS=ΔBΔtπr2,因ra∶rb=2∶1,故Ea∶Eb=4∶1;由楞次定律知感应电流的方向均沿顺时针方向,选项B正确.
3.如图所示,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为E;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为E′,则E′E等于()
A.12B.22
C.1D.2
解析:选B.设金属棒长度为l,匀强磁场的磁感应强度为B,根据电磁感应定律得E=Blv.金属棒弯折后,切割磁感线运动的有效长度变为22l,故E′=22Blv.因此E′E=22,B正确.
4.(20xx江苏盐城中学学情检测)(多选)如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零.A和B是两个完全相同的灯泡,则下列说法中正确的有()
A.当开关S闭合瞬间,A、B两灯同时亮,最后B灯熄灭
B.当开关S断开瞬间,A、B两灯同时熄灭
C.当开关S断开瞬间,a点电势比b点电势低
D.当开关S断开瞬间,流经灯泡B的电流是由a到b
解析:选AD.开关S闭合瞬间,线圈L对电流有阻碍作用,则相当于灯泡A与B串联,因此同时亮,且亮度相同,稳定后B被短路熄灭,选项A正确;稳定后当开关S断开后,A马上熄灭,由于自感,线圈中的电流只能慢慢减小,其相当于电源,左端电势高,与灯泡B构成闭合回路放电,流经灯泡B的电流是由a到b,B闪一下再熄灭,选项D正确,B、C错误.
考点一法拉第电磁感应定律的理解及应用
1.感应电动势大小的决定因素
(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.
(2)当ΔΦ仅由B引起时,则E=nSΔBΔt;当ΔΦ仅由S引起时,则E=nBΔSΔt;当ΔΦ由B、S的变化同时引起,则E=nB2S2-B1S1Δt≠nΔBΔSΔt.
2.磁通量的变化率ΔΦΔt是Φ-t图象上某点切线的斜率.
3.应用E=nΔΦΔt时应注意的几个问题
(1)由于磁通量有正负之分,计算磁通量的变化时一定要规定磁通量的正方向.正向的磁通量增加与反向的磁通量减少产生的感应电流的方向相同.
(2)公式E=nΔΦΔt是求解回路某段时间内平均电动势的最佳选择.若ΔΦΔt为恒量,则平均电动势等于瞬时电动势.
(3)用公式E=nSΔBΔt求感应电动势时,S为线圈在磁场范围内垂直磁场方向的有效面积.
1.图为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S.若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa-φb()
A.恒为nSB2-B1t2-t1
B.从0均匀变化到nSB2-B1t2-t1
C.恒为-nSB2-B1t2-t1
D.从0均匀变化到-nSB2-B1t2-t1
解析:选C.根据法拉第电磁感应定律得,感应电动势E=nΔΦΔt=nB2-B1St2-t1,由楞次定律和右手螺旋定则可判断b点电势高于a点电势,因磁场均匀变化,所以感应电动势恒定,因此a、b两点电势差恒为φa-φb=-nB2-B1St2-t1,选项C正确.
2.(20xx湖南衡阳联考)用均匀导线做成的正方形线圈边长为l,如图所示,正方形的一半放在垂直于纸面向里的匀强磁场中,当磁场以ΔBΔt的变化率增强时,不考虑磁场的变化对虚线右侧的影响,则()
A.线圈中感应电流方向为adbca
B.线圈中产生的电动势E=ΔBΔtl2
C.线圈中a点电势高于b点电势
D.线圈中b、a两点间的电势差为l2ΔB4Δt
解析:选D.处于磁场中的线圈面积不变,ΔBΔt增大时,通过线圈的磁通量增大,由楞次定律可知,感应电流的方向为acbda方向,A项错;产生感应电动势的acb部分等效为电源,b端为等效电源的正极,电势高于a端,C项错;由法拉第电磁感应定律E=ΔΦΔt=ΔBΔtl22,知B项错;adb部分等效为外电路,b、a两点间电势差为等效电路的路端电压,U=E2RR=E2=l2ΔB4Δt,D项正确.
3.A、B两闭合圆形导线环用相同规格的导线制成,它们的半径之比rA∶rB=2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示.在磁场的磁感应强度随时间均匀增大的过程中,下列说法正确的是()
A.两导线环内所产生的感应电动势相等
B.A环内所产生的感应电动势大于B环内所产生的感应电动势
C.流过A、B两导线环的感应电流的大小之比为1∶4
D.流过A、B两导线环的感应电流的大小之比为1∶1
解析:选A.某一时刻穿过A、B两导线环的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S,则Φ=BS,由E=ΔΦΔt=ΔBΔtS(S为磁场区域面积),对A、B两导线环,有EAEB=1,所以A正确,B错误;I=ER,R=ρlS1(S1为导线的横截面积),l=2πr,所以IAIB=EArBEBrA=12,C、D错误.
4.(20xx连云港质检)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0m、bc=0.5m,电阻r=2Ω.磁感应强度B在0~1s内从零均匀变化到0.2T.在1s~5s内从0.2T均匀变化到-0.2T,取垂直纸面向里为磁场的正方向.求:
(1)0.5s时线圈内感应电动势的大小E和感应电流的方向;
(2)在1s~5s内通过线圈的电荷量q;
解析:(1)感应电动势E1=NΔΦ1Δt1
磁通量的变化量ΔΦ1=ΔB1S
解得E1=NΔB1SΔt1
代入数据得E1=10V
由楞次定律得,感应电流的方向为a→d→c→b→a.
(2)同理可得在1s~5s内产生的感应电动势
E2=NΔB2SΔt2
感应电流I2=E2r
电荷量q=I2Δt2
解得q=NΔB2Sr
代入数据得q=10C
答案:(1)10Va→d→c→b→a(2)10C
应用法拉第电磁感应定律的两点注意
(1)一般步骤:
①分析穿过闭合电路的磁场方向及磁通量的变化情况;
②利用楞次定律确定感应电流的方向;
③灵活选择法拉第电磁感应定律的不同表达形式列方程求解.
(2)一个结论:通过回路截面的电荷量q仅与n、ΔΦ和回路总电阻R总有关,与时间长短无关.推导如下:q=IΔt=nΔΦΔtR总Δt=nΔΦR总.
考点二导体棒切割类电动势的计算
1.导体平动切割磁感线
(1)一般情况:运动速度v和磁感线方向夹角为θ,则E=Blvsinθ.
(2)常用情况:运动速度v和磁感线方向垂直,则E=Blv.
(3)若导体棒不是直的,则E=Blv中的l为切割磁感线的导体棒的有效长度.下图中,棒的有效长度均为ab间的距离.
2.导体转动切割磁感线
导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生的感应电动势E=12Bωl2(导体棒的长度为l).
1.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上,当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是()
A.UaUc,金属框中无电流
B.UbUc,金属框中的电流方向沿abca
C.Ubc=-12Bl2ω,金属框中无电流
D.Uac=12Bl2ω,金属框中电流方向沿acba
解析:选C.金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B、D错误.转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则判断UaUc,UbUc,选项A错误.由转动切割产生感应电动势的公式得Ubc=-12Bl2ω,选项C正确.
2.如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()
A.电路中感应电动势的大小为Blvsinθ
B.电路中感应电流的大小为Bvsinθr
C.金属杆所受安培力的大小为B2lvsinθr
D.金属杆的热功率为B2lv2rsinθ
解析:选B.金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E=Blv(l为切割磁感线的有效长度),选项A错误;电路中感应电流的大小为I=ER=Blvlrsinθ=Bvsinθr,选项B正确;金属杆所受安培力的大小为F=BIl′=BBvsinθrlsinθ=B2lvr,选项C错误;金属杆的热功率为P=I2R=B2v2sin2θr2lrsinθ=B2lv2sinθr,选项D错误.
3.(20xx山东济南模拟)在范围足够大,方向竖直向下的匀强磁场中,磁感应强度B=0.2T,有一水平放置的光滑框架,宽度L=0.4m,如图所示,框架上放置一质量m=0.05kg、电阻R=1Ω的金属杆cd,框架电阻不计.若杆cd在水平外力F的作用下以恒定加速度a=2m/s2,由静止开始向右做匀变速运动,求:
(1)在5s内平均感应电动势E是多少?
(2)第5s末回路中的电流I多大?
(3)第5s末作用在杆cd上的水平外力F多大?
解析:(1)t=5s内金属杆的位移
x=12at2=25m
5s内的平均速度
v=xt=5m/s也可用v=0+v52求解
故平均感应电动势E=BLv=0.4V
(2)第5s末杆的速度v=at=10m/s
此时感应电动势E=BLv
则回路中的电流为I=ER=BLvR=0.8A
(3)杆cd匀加速运动,由左手定则判得所受安培力方向向左,由牛顿第二定律得F-F安=ma
杆cd所受安培力F安=BIL,
即F=BIL+ma=0.164N
答案:(1)0.4V(2)0.8A(3)0.164N
求解感应电动势常见情况与方法
情景图

研究对象回路(不一定闭合)一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B垂直且在导线框平面内的轴转动的导线框
表达式E=nΔΦΔt
E=BLvsinθE=12BL2ω
E=NBSωsin(ωt+φ0)

考点三自感现象的理解及应用
1.自感现象的四大特点
(1)自感电动势总是阻碍导体中原电流的变化.
(2)通过线圈中的电流不能发生突变,只能缓慢变化.
(3)电流稳定时,自感线圈就相当于普通导体.
(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.
2.自感中“闪亮”与“不闪亮”问题
与线圈串联的灯泡与线圈并联的灯泡
电路图

通电时电流逐渐增大,灯泡逐渐变亮电流突然增大,然后逐渐减小达到稳定
断电时电流逐渐减小,灯泡逐渐变暗,电流方向不变电路中稳态电流为I1、I2:①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况灯泡中电流方向均改变.
1.(多选)如图甲、乙所示,电路中的电阻R和自感线圈L的电阻值都很小,且小于灯泡A的电阻,接通S,使电路达到稳定,灯泡A发光,则()
A.在电路甲中,断开S后,A将逐渐变暗
B.在电路甲中,断开S后,A将先变得更亮,然后才逐渐变暗
C.在电路乙中,断开S后,A将逐渐变暗
D.在电路乙中,断开S后,A将先变得更亮,然后才逐渐变暗
解析:选AD.题图甲所示电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R、A形成回路,灯A逐渐变暗.题图乙所示电路中,电阻R和灯A串联,灯A和电阻R的总电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不给灯供电,而线圈L产生自感电动势阻碍电流的减小,通过R、A形成回路,灯A中电流比原来大,变得更亮,然后逐渐变暗.
2.(多选)如图所示,电路中A和B是两个完全相同的小灯泡,L是一个自感系数很大、直流电阻为零的电感线圈,C是电容很大的电容器.当S闭合与断开时,对A、B的发光情况判断正确的是()
A.S闭合时,A立即亮,然后逐渐熄灭
B.S闭合时,B立即亮,然后逐渐熄灭
C.S闭合足够长时间后,B发光而A不发光
D.S闭合足够长时间后再断开,B立即熄灭而A逐渐熄灭
答案:AC.
3.(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()
解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.
(1)对自感现象“阻碍”作用的理解
①流过线圈的电流增加时,线圈中产生的自感电动势阻碍电流的增加,使其缓慢地增加;
②流过线圈的电流减小时,线圈中产生的自感电动势阻碍原电流的减小,使其缓慢地减小.
(2)分析自感现象应注意
①通过自感线圈中的电流不能发生突变,即通电过程中,电流逐渐变大,断电过程中,电流逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路;
②断电自感现象中灯泡是否“闪亮”的判断:若断电后通过灯泡的电流比原来强,则灯泡先闪亮,再慢慢熄灭.
课时规范训练
[基础巩固题组]
1.(多选)粗细均匀的导线绕成匝数为n、半径为r的圆形闭合线圈.线圈放在磁场中,磁场的磁感应强度随时间均匀增大,线圈中产生的电流为I,下列说法正确的是()
A.电流I与匝数n成正比
B.电流I与线圈半径r成正比
C.电流I与线圈面积S成正比
D.电流I与导线横截面积S0成正比
解析:选BD.由题给条件可知感应电动势为E=nπr2ΔBΔt,电阻为R=ρn2πrS0,电流I=ER,联立以上各式得I=S0r2ρΔBΔt,则可知B、D项正确,A、C项错误.
2.(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()
A.若圆盘转动的角速度恒定,则电流大小恒定
B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动
C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化
D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
解析:选AB.由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a到b的方向流动,选项B正确;由感应电动势E=12Bl2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P=I2R知,电流在R上的热功率变为原来的4倍,选项D错误.
3.(多选)一导线弯成如图所示的闭合线圈,以速度v向左匀速进入磁感应强度为B的匀强磁场,磁场方向垂直纸面向外.线圈总电阻为R,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是()
A.感应电流一直沿顺时针方向
B.线圈受到的安培力先增大,后减小
C.感应电动势的最大值E=Brv
D.穿过线圈某个横截面的电荷量为Br2+πr2R
解析:选AB.在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增大,根据楞次定律可知感应电流的方向一直沿顺时针方向,A正确;线圈切割磁感线的有效长度先变长后变短,感应电流先变大后变小,安培力也先变大后变小,B正确;线圈切割磁感线的有效长度最大值为2r,感应电动势最大值E=2Brv,C错误;穿过线圈某个横截面的电荷量为Q=ΔΦR=Br2+π2r2R,D错误.
4.如图所示,正方形线框的左半侧处在磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN恰与磁场边缘平齐.若第1次将线框从磁场中以恒定速度v1向右匀速拉出,第2次以线速度v2让线框绕轴MN匀速转过90°,为使两次操作过程中,线框产生的平均感应电动势相等,则()
A.v1∶v2=2∶πB.v1∶v2=π∶2
C.v1∶v2=1∶2D.v1∶v2=2∶1
解析:选A.第1次将线框从磁场中以恒定速度v1向右匀速拉出,线框中的感应电动势恒定,有E1=E1=BLv1.第2次以线速度v2让线框绕轴MN匀速转过90°,所需时间t=πr2v2=πL4v2,线框中的磁通量变化量ΔΦ=BLL2=12BL2,产生的平均电动势E2=ΔΦt=2BLv2π.由题意知E1=E2,可得v1∶v2=2∶π,A正确.
5.如图所示的电路,电源电动势为E,线圈L的电阻不计,以下判断正确的是()
A.闭合S,稳定后,电容器两端电压为E
B.闭合S,稳定后,电容器的a极板带正电
C.断开S的瞬间,电容器的a极板将带正电
D.断开S的瞬间,电容器的a极板将带负电
解析:选C.由题意及自感现象规律可知,当开关S闭合且电路稳定后,电容器与线圈L并联,由于线圈的直流电阻不计,所以电容器两端电压为零,故A、B项错误;断开S的瞬间,由自感规律可知,线圈中要产生感应电动势,感应电动势引起的感应电流的方向与原电流的方向一致,因而电容器的a极板将带正电,故C项正确.
[综合应用题组]
6.光滑曲面与竖直平面的交线是抛物线,如右图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是()
A.mgbB.12mv2
C.mg(b-a)D.mg(b-a)+12mv2
解析:选D.金属块在进出磁场过程中要产生感应电流,机械能要减少,上升的最大高度不断降低,最后刚好飞不出磁场,就往复运动永不停止,由能量守恒可得Q=ΔE=12mv2+mg(b-a).
7.如图所示,边长为2L的正方形虚线框内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.一个边长为L、粗细均匀的正方形导线框abcd,其所在平面与磁场方向垂直,导线框的对角线与虚线框的对角线在一条直线上,导线框各边的电阻大小均为R.在导线框从图示位置开始以恒定速度沿对角线方向进入磁场,到整个导线框离开磁场区域的过程中,下列说法正确的是()
A.导线框进入磁场区域时产生顺时针方向的感应电流
B.导线框中有感应电流的时间为2Lv
C.导线框的bd对角线有一半进入磁场时,整个导线框所受安培力大小为B2L2v4R
D.导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为2BLv4
解析:选D.根据楞次定律知,感应电流的效果总是阻碍磁通量的变化,故由楞次定律判断出,导线框进入磁场区域时产生的感应电流的方向为逆时针方向,故选项A错误;导线框完全进入磁场后感应电流消失,导线框从开始进入磁场到完全进入经历的时间为2Lv,穿出的时间也为2Lv,导线框中有感应电流的时间为t=2Lv×2,故选项B错误;导线框的bd对角线有一半进入磁场时,导体的有效切割长度为2L2,感应电动势为2BLv2,由安培力公式可算出安培力为B2L2v8R,故选项C错误;导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为电动势的一半,即2BLv4,故选项D正确.
8.如图所示的电路中,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈,其直流电阻与灯泡电阻相同.下列说法正确的是()
A.闭合开关S,A灯逐渐变亮
B.电路接通稳定后,流过B灯的电流是流过C灯电流的32
C.电路接通稳定后,断开开关S,C灯立即熄灭
D.电路接通稳定后,断开开关S,A、B、C灯过一会儿才熄灭,且A灯亮度比B、C灯亮度高
解析:选D.画出等效电路如图所示,闭合开关S,所有的灯都立即变亮,A错误;电路稳定后,线圈和灯泡A的并联电阻为R2,与B灯的串联电阻为3R2,C灯的电阻为R,根据并联电路分流与电阻成反比,故流过B灯的电流是流过C灯电流的23,B错误;断开开关S,线圈产生的感应电动势对三个灯泡供电,因此三个灯泡都过一会才熄灭,供电电路是B、C灯串联与A灯并联,因此A灯的亮度比B、C灯的亮度高,C错误,D正确.
9.如图所示,PQQ2P2是由两个正方形导线方格PQQ1P1、P1Q1Q2P2构成的网络电路.方格每边长度l=10cm.在x0的半空间分布有随时间t均匀增加的匀强磁场,磁场方向垂直于xOy平面并指向纸内.今令网络电路PQQ2P2以恒定的速度v=5cm/s沿x轴正方向运动并进入磁场区域,在运动过程中方格的边PQ始终与y轴平行.若取PQ与y轴重合的时刻为t=0,在以后任一时刻t磁场的磁感应强度为B=B0+bt,式中t的单位为s,B0、b为已知恒量.当t=2.5s时刻,方格PQQ1P1中的感应电动势是E1,方格P1Q1Q2P2中的感应电动势是E2.E1、E2的表达式正确的是()
A.E1=B0lvB.E1=bl2
C.E2=bl24D.E2=(B0+bt)lv
解析:选B.经过2.5s,线框向右运动了12.5cm,此时右边的线框只有感生电动势,根据法拉第电磁感应定律得E1=bl2,B正确,A错误;此时左边的线框只有右边在磁场中,离磁场边界0.25l,线框中既有动生电动势又有感生电动势,故电动势的大小E2=(B0+2.5b)lv+0.25bl2,C、D错误.
10.小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为n1.线圈的下边处于匀强磁场内,磁感应强度B0=1.0T,方向垂直线圈平面向里.线圈中通有可在0~2.0A范围内调节的电流I.挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g=10m/s2)
(1)为使电磁天平的量程达到0.5kg,线圈的匝数n1至少为多少?
(2)进一步探究电磁感应现象,另选n2=100匝、形状相同的线圈,总电阻R=10Ω.不接外电流,两臂平衡.如图2所示,保持B0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度d=0.1m.当挂盘中放质量为0.01kg的物体时,天平平衡,求此时磁感应强度的变化率ΔBΔt.
解析:(1)线圈受到安培力F=n1B0IL
天平平衡mg=n1B0IL
代入数据得n1=25匝
(2)由电磁感应定律得E=n2ΔΦΔt
即E=n2ΔBΔtLd
由欧姆定律得I′=ER
线圈受到安培力F′=n2B0I′L
天平平衡m′g=n22B0ΔBΔtdL2R
代入数据可得ΔBΔt=0.1T/s
答案:(1)25匝(2)0.1T/s
11.(1)如图甲所示,两根足够长的平行导轨,间距L=0.3m,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B1=0.5T.一根直金属杆MN以v=2m/s的速度向右匀速运动,杆MN始终与导轨垂直且接触良好.杆MN的电阻r1=1Ω,导轨的电阻可忽略.求杆MN中产生的感应电动势E1.
(2)如图乙所示,一个匝数n=100的圆形线圈,面积S1=0.4m2,电阻r2=1Ω.在线圈中存在面积S2=0.3m2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B2随时间t变化的关系如图丙所示.求圆形线圈中产生的感应电动势E2.
(3)有一个R=2Ω的电阻,将其两端a、b分别与图甲中的导轨和图乙中的圆形线圈相连接,b端接地.试判断以上两种情况中,哪种情况a端的电势较高?求这种情况中a端的电势φa.
解析:(1)杆MN做切割磁感线的运动,E1=B1Lv
产生的感应电动势E1=0.3V.
(2)穿过圆形线圈的磁通量发生变化,E2=nΔB2ΔtS2
产生的感应电动势E2=4.5V.
(3)当电阻R与题图甲中的导轨相连接时,a端的电势较高
通过电阻R的电流I=E1R+r1
电阻R两端的电势差φa-φb=IR
a端的电势φa=IR=0.2V.
答案:(1)0.3V(2)4.5V(3)与图甲中的导轨相连接a端电势高φa=0.2V
第3节电磁感应的综合应用
一、电磁感应中的电路问题
1.电源和电阻
2.电流方向
在外电路,电流由高电势流向低电势;在内电路,电流由低电势流向高电势.
二、电磁感应中的图象问题
图象类型①随时间t变化的图象,如B-t图象、Φ-t图象、E-t图象和I-t图象
②随位移x变化的图象,如E-x图象和I-x图象
问题类型①由给定的电磁感应过程判断或画出正确的图象
②由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象)
应用知识左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律,函数图象等知识
三、电磁感应中的动力学问题
1.安培力的大小
感应电动势:E=Blv感应电流:I=ER+r安培力公式:F=BIlF=B2l2vR+r
2.安培力的方向
(1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向.
(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反.
四、电磁感应中的能量问题
1.能量的转化
闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力.外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为其他形式的能.
2.实质
电磁感应现象的能量转化,实质是其他形式的能和电能之间的转化.
[自我诊断]
1.判断正误
(1)闭合电路的欧姆定律同样适用于电磁感应电路.(√)
(2)“相当于电源”的导体棒两端的电压一定等于电源的电动势.(×)
(3)闭合电路中电流一定从高电势流向低电势.(×)
(4)在有安培力的作用下,导体棒不能做加速运动.(×)
(5)电磁感应中求焦耳热时,均可直接用公式Q=I2Rt.(×)
(6)电路中的电能增加,外力一定克服安培力做了功.(√)
2.如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的一半,磁场垂直穿过粗金属环所在的区域,当磁感应强度均匀变化时,在粗环内产生的电动势为E,则ab两点间的电势差为()
A.E2B.E3
C.2E3D.E
解析:选C.粗环相当于电源,细环相当于负载,ab间的电势差就是等效电路的路端电压.粗环电阻是细环电阻的一半,则路端电压是电动势的23,即Uab=2E3.
3.如图所示,水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ垂直导轨放置.今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为va、vb,到位置c时棒刚好静止,设导轨与棒的电阻均不计,a到b与b到c的间距相等,则金属棒在由a到b和由b到c的两个过程中()
A.回路中产生的内能相等
B.棒运动的加速度相等
C.安培力做功相等
D.通过棒横截面积的电荷量相等
解析:选D.棒由a到b再到c的过程中,速度逐渐减小,根据E=Blv,E减小,故I减小,再根据F=IlB可知安培力减小,根据F=ma可知加速度减小,选项B错误.由于a到b与b到c的间距相等,故从a到b安培力做的功大于从b到c安培力做的功,故选项A、C错误.再根据平均感应电动势E=ΔΦΔt=BΔSΔt,平均感应电流I=ER=BΔSRΔt,通过棒横截面积的电荷量为q=IΔt=BΔSR,故选项D正确.
4.如图,一载流长直导线和一矩形线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向,线框受到的安培力的合力先水平向左,后水平向右.设电流i的正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是()
解析:选A.因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边的电流大小相等,方向相反,所以其受到的安培力方向相反,线框的左边受到的安培力大于线框的右边受到的安培力,所以合力与线框的左边受力的方向相同.因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手螺旋定则,导线中的电流先为正,后为负,所以选项A正确,B、C、D错误.
考点一电磁感应中的电路问题
1.内电路和外电路
(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.
2.电源电动势和路端电压
(1)电动势:E=Blv或E=nΔΦΔt.
(2)路端电压:U=IR=E-Ir=ER+rR.
1.(20xx江西赣中南五校联考)如图所示,用相同导线制成的边长为L或2L的4个单匝闭合回路,它们以相同的速度先后垂直穿过正方形匀强磁场区域,磁场方向垂直纸面向外,区域宽度大于2L,则进入磁场过程中,电流最大的回路是()
A.甲B.乙
C.丙D.丁
解析:选C.线框进入磁场过程中,做切割磁感线运动,产生的感应电动势E=Bdv,根据电阻定律可知,线框的电阻R=ρLS,由闭合电路欧姆定律可知,回路中的感应电流I=ER,联立以上各式有I=BSvρdL,所以线框切割磁感线的边长d越长,总长度L越短,其感应电流越大,对照4种图形可知,C正确.
2.(20xx贵州七校联考)(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1m,cd间、de间、cf间分别接阻值为R=10Ω的电阻.一阻值为R=10Ω的导体棒ab以速度v=4m/s匀速向左运动,导体棒与导轨接触良好,导轨所在平面存在磁感应强度大小为B=0.5T、方向竖直向下的匀强磁场.下列说法中正确的是()
A.导体棒ab中电流的流向为由b到a
B.cd两端的电压为1V
C.de两端的电压为1V
D.fe两端的电压为1V
解析:选BD.由右手定则可判知A错误;由法拉第电磁感应定律E=Blv=0.5×1×4V=2V,Ucd=RR+RE=1V,B正确;由于de、cf间电阻没有电流流过,故Ude=Ucf=0,所以Ufe=Ucd=1V,C错误,D正确.
3.(多选)如图所示电路中,均匀变化的匀强磁场只存在于虚线框内,三个电阻阻值之比R1∶R2∶R3=1∶2∶3,其他部分电阻不计.当S3断开,而S1、S2闭合时,回路中感应电流为I,当S1断开,而S2、S3闭合时,回路中感应电流为5I,当S2断开,而S1、S3闭合时,可判断()
A.闭合回路中感应电流为4I
B.闭合回路中感应电流为7I
C.R1、R3消耗的功率之比PR1∶PR3=3∶1
D.上下两部分磁场的面积之比S上∶S下=3∶25
解析:选BD.因R1∶R2∶R3=1∶2∶3,可以设R1=R,R2=2R,R3=3R.由题图可知,当S1、S2闭合S3断开时,电阻R1与R2组成闭合回路,设此时感应电动势是E1,由欧姆定律可得E1=3IR;当S2、S3闭合S1断开时,电阻R2与R3组成闭合回路,设感应电动势为E2,由欧姆定律可得E2=5I×5R=25IR;当S1、S3闭合S2断开时,电阻R1与R3组成闭合回路,此时感应电动势E=E1+E2=28IR,则此时的电流I′=28IR4R=7I,A错误,B正确.
根据P=I2R可知,串联电路电流相等,则各电阻的功率与电阻阻值成正比,故PR1∶PR3=1∶3,C错误.E1=3IR,E2=25IR,再根据法拉第电磁感应定律E=SΔBΔt可知,上下两部分磁场的面积之比S上∶S下=3∶25,D正确.
4.(20xx湖北咸宁联考)如图所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l=0.5m,左端通过导线与阻值R=3Ω的电阻连接,右端通过导线与阻值为RL=6Ω的小灯泡L连接,在CDFE矩形区域内有竖直向上,磁感应强度B=0.2T的匀强磁场.一根阻值r=0.5Ω、质量m=0.2kg的金属棒在恒力F=2N的作用下由静止开始从AB位置沿导轨向右运动,经过t=1s刚好进入磁场区域.求金属棒刚进入磁场时:
(1)金属棒切割磁感线产生的电动势;
(2)小灯泡两端的电压和金属棒受到的安培力.
解析:(1)0~1s棒只受拉力,由牛顿第二定律得F=ma,金属棒进入磁场前的加速度a=Fm=10m/s2.
设其刚要进入磁场时速度为v,v=at=10×1m/s=10m/s.
金属棒进入磁场时切割磁感线,感应电动势E=Blv=0.2×0.5×10V=1V.
(2)小灯泡与电阻R并联,R并=RRLR+RL=2Ω,通过金属棒的电流大小I=ER并+r=0.4A,小灯泡两端的电压U=E-Ir=1V-0.4×0.5V=0.8V.
金属棒受到的安培力大小FA=BIl=0.2×0.4×0.5N=0.04N,由右手定则和左手定则可判断安培力方向水平向左.
答案:(1)1V(2)0.8V0.04N,方向水平向左
解决电磁感应中的电路问题三部曲
考点二电磁感应中的图象问题
1.图象问题的求解类型
类型据电磁感应过程选图象据图象分析判断电磁感应过程
求解流程

2.解题关键
弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.
3.解决图象问题的一般步骤
(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;
(2)分析电磁感应的具体过程;
(3)用右手定则或楞次定律确定方向的对应关系;
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;
(6)画图象或判断图象.
考向1:据电磁感应过程选择图象
问题类型由给定的电磁感应过程选出正确的图象
解题关键根据题意分析相关物理量的函数关系、分析物理过程中的转折点、明确“+、-”号的含义,结合数学知识做正确的判断
[典例1](20xx湖北宜昌模拟)如图所示,有一等腰直角三角形的区域,其斜边长为2L,高为L.在该区域内分布着如图所示的磁场,左侧小三角形内磁场方向垂直纸面向外,右侧小三角形内磁场方向垂直纸面向里,磁感应强度大小均为B.一边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流方向为正,则图中表示线框中电流i随bc边的位置坐标x变化的图象正确的是()
解析bc边的位置坐标x在L~2L过程,线框bc边有效切割长度为l1=x-L,感应电动势为E=Bl1v=B(x-L)v,感应电流i1=ER=Bx-LvR,根据楞次定律判断出感应电流方向沿a→b→c→d→a,为正值.x在2L~3L过程,ad边和bc边都切割磁感线,产生感应电动势,根据楞次定律判断出感应电流方向沿a→d→c→b→a,为负值,有效切割长度为l2=L,感应电动势为E=Bl2v=BLv,感应电流i2=-BLvR.x在3L~4L过程,线框ad边有效切割长度为l3=L-(x-3L)=4L-x,感应电动势为E=Bl3v=B(4L-x)v,感应电流i3=B4L-xvR,根据楞次定律判断出感应电流方向沿a→b→c→d→a,为正值.根据数学知识知道D正确.
答案D
考向2:据图象分析判断电磁感应过程
问题类型由电磁感应图象得出的物理量和规律分析求解动力学、电路等问题
解题关键第一个关键是破译,即解读图象中的关键信息(尤其是过程信息),另一个关键是转换,即有效地实现物理信息和数学信息的相互转换
[典例2](20xx河南中原名校联考)如图甲,在水平桌面上固定着两根相距L=20cm、相互平行的无电阻轨道P、Q,轨道一端固定一根电阻R=0.02Ω的导体棒a,轨道上横置一根质量m=40g、电阻可忽略不计的金属棒b,两棒相距也为L=20cm,该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B0=0.1T.设棒与轨道间的最大静摩擦力等于滑动摩擦力,g取10m/s2.
(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给b棒施加一个水平向右的拉力,使它由静止开始做匀加速直线运动.此拉力F的大小随时间t变化关系如图乙所示.求b棒做匀加速运动的加速度及b棒与轨道间的滑动摩擦力;
(2)若从t=0开始,磁感应强度B随时间t按图丙中图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量.
解析(1)F安=B0IL①
E=B0Lv②
I=ER=B0LvR③
v=at④
所以F安=B20L2aRt
当b棒匀加速运动时,根据牛顿第二定律有
F-f-F安=ma⑤
联立可得F-f-B20L2aRt=ma⑥
由图象可得:当t=0时,F=0.4N,当t=1s时,
F=0.5N.
代入⑥式,可解得a=5m/s2,f=0.2N.
(2)当磁感应强度均匀增大时,闭合电路中有恒定的感应电流I,以b棒为研究对象,它受到的安培力逐渐增大,静摩擦力也随之增大,当磁感应强度增大到b所受安培力F安′与最大静摩擦力f相等时开始滑动.
感应电动势E′=ΔBΔtL2=0.02V⑦
I′=E′R=1A⑧
棒b将要运动时,有F安′=BtI′L=f⑨
所以Bt=1T,根据Bt=B0+ΔBΔtt⑩
得t=1.8s.
回路中产生的焦耳热为Q=I′2Rt=0.036J.
答案(1)5m/s20.2N(2)0.036J
考向3:图象的描绘
问题类型由题目给出的电磁感应现象画出所求物理量的图象
解题关键由题目给出的电磁感应过程结合所学物理规律求出所求物理量的函数关系式,然后在坐标系中做出相对应的图象
[典例3]如图甲所示,水平面上固定一个间距L=1m的光滑平行金属导轨,整个导轨处在竖直方向的磁感应强度B=1T的匀强磁场中,导轨一端接阻值R=9Ω的电阻.导轨上有质量m=1kg、电阻r=1Ω、长度也为1m的导体棒,在外力的作用下从t=0开始沿平行导轨方向运动,其速度随时间的变化规律是v=2t,不计导轨电阻.求:
(1)t=4s时导体棒受到的安培力的大小;
(2)请在如图乙所示的坐标系中画出电流平方与时间的关系(I2t)图象.
解析(1)4s时导体棒的速度
v=2t=4m/s
感应电动势E=BLv,感应电流I=ER+r
此时导体棒受到的安培力
F安=BIL=0.4N
(2)由(1)可得
I2=ER+r2=4BLR+r2t=0.04t
作出图象如图所示.
答案(1)0.4N(2)见解析图
(1)处理图象问题要做到“四明确、一理解”
(2)电磁感应中图象类选择题的两个常用方法
①排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.
②函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.
考点三电磁感应中的动力学和能量问题
1.两种状态及处理方法
状态特征处理方法
平衡态加速度为零根据平衡条件列式分析
非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析
2.力学对象和电学对象的相互关系
3.能量转化过程的理解
(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.
(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.
(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.
1.(20xx安徽宿州一模)(多选)两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g,如图所示.现将金属棒从弹簧原长位置由静止释放,则()
A.金属棒在最低点的加速度小于g
B.回路中产生的总热量等于金属棒重力势能的减少量
C.当弹簧弹力等于金属棒的重力时,金属棒下落速度最大
D.金属棒在以后运动过程中的最大高度一定低于静止释放时的高度
解析:选AD.金属棒先向下做加速运动,后向下做减速运动,假设没有磁场,金属棒运动到最低点时,根据简谐运动的对称性可知,最低点的加速度等于刚释放时的加速度g,由于金属棒向下运动的过程中产生感应电流,受到安培力,而安培力是阻力,则知金属棒下降的高度小于没有磁场时的高度,故金属棒在最低点的加速度小于g.故A正确.根据能量守恒定律得知,回路中产生的总热量等于金属棒重力势能的减少量与弹簧弹性势能增加量之差,故B错误,金属棒向下运动的过程中,受到重力、弹簧的弹力和安培力三个力作用,当三力平衡时,速度最大,即当弹簧弹力、安培力之和等于金属棒的重力时,金属棒下落速度最大,故C错误.由于产生内能,且弹簧具有弹性势能,由能量守恒得知,金属棒在以后运动过程中的最大高度一定低于静止释放时的高度,故D正确.
2.(20xx河北邯郸一模)如图所示,一足够长的光滑平行金属轨道,轨道平面与水平面成θ角,上端与一电阻R相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m、电阻为r的金属杆ab,从高为h处由静止释放,下滑一段时间后,金属杆开始以速度v匀速运动直到轨道的底端.金属杆始终保持与轨道垂直且接触良好,轨道的电阻及空气阻力均可忽略不计,重力加速度为g.则()
A.金属杆加速运动过程中的平均速度为v/2
B.金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率
C.当金属杆的速度为v/2时,它的加速度大小为gsinθ2
D.整个运动过程中电阻R产生的焦耳热为mgh-12mv2
解析:选C.对金属杆分析知,金属杆ab在运动过程中受到重力、轨道支持力和安培力作用,先做加速度减小的加速运动,后做匀速运动,因金属杆加速运动过程不是匀加速,故其平均速度不等于v2,A错误.当安培力等于重力沿斜面的分力,即mgsinθ=B2l2vR时,杆ab开始匀速运动,此时v最大,F安最大,故匀速运动时克服安培力做功的功率大,B错误;当金属杆速度为v2时,F安′=B2l2v2R=12mgsinθ,所以F合=mgsinθ-F安′=12mgsinθ=ma,得a=gsinθ2,C正确;由能量守恒可得mgh-12mv2=Qab+QR,即mgh-12mv2应等于电阻R和金属杆上产生的总焦耳热,D错误.

高三物理《曲线运动万有引力与航天》复习检测


高三物理《曲线运动万有引力与航天》复习检测

一、选择题(本题共13小题,每小题5分,共65分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)
1、在漂流探险中,探险者驾驶摩托艇想上岸休息.假设江岸是平直的,江水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,原来地点A离岸边最近处O点的距离为d.若探险者想在最短时间内靠岸,则摩托艇登陆的地点离O点的距离为()
A.B.0
C.D.
C[根据运动的独立性与等时性可知,当摩托艇船头垂直江岸航行,即摩托艇在静水中的航速v2全部用来靠岸时,用时最短,最短时间t=,在此条件下摩托艇登陆的地点离O点的距离为x=v1t=.故选C.]
2.如图1所示,小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况是()

图1
A.重力、支持力
B.重力、向心力
C.重力、支持力、指向圆心的摩擦力
D.重力、支持力、向心力、摩擦力
C[物体在水平面上,一定受到重力和支持力作用,物体在转动过程中,有背离圆心的运动趋势,因此受到指向圆心的静摩擦力,且静摩擦力提供向心力,故A、B、D错误,C正确.]
3.如图2所示是一个玩具陀螺.a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()

图2
A.a、b和c三点的线速度大小相等
B.a、b和c三点的角速度相等
C.a、b的角速度比c的大
D.c的线速度比a、b的大
B[a、b、c三点为共轴转动,故角速度相等,B正确,C错误;又由题图知,三点的转动半径ra=rbrc,根据v=ωr知,va=vbvc,故A、D错误.]
4.1.(20xx·温州调研)若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()

C[物体做曲线运动时,轨迹夹在速度方向和合力方向之间,合力大致指向轨迹凹的方向.故C正确,而B不应该出现向下凹的现象,故A、B、D错误.]
5.如图3所示,细线一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()

图3
A.vsinθB.vcosθ
C.vtanθD.vcotθ
A[将光盘水平向右移动的速度v分解为沿细线方向的速度和垂直于细线方向的速度,而小球上升的速度大小与速度v沿细线方向的分速度大小相等,故可得:v球=vsinθ,A正确.]
6.(20xx·宁波选考模拟)光盘驱动器读取数据的某种方式可简化为以下模式,在读取内环数据时,以恒定角速度方式读取,而在读取外环数据时,以恒定线速度的方式读取.如图4所示,设内环内边缘半径为R1,内环外边缘半径为R2,外环外边缘半径为R3.A、B、C分别为各边缘线上的点,则读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为()

图4
A.B.
C.D.
D[内环外边缘和外环内边缘为同一圆.A与B角速度相等,向心加速度之比为=.B与C线速度相等,向心加速度之比为=,读取内环上A点时的向心加速度大小和读取外环上C点时的向心加速度大小之比为=,选项D正确.]
7.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重力加速度约为()
A.0.2gB.0.4g
C.2.5gD.5g
B[星球表面重力等于万有引力,即G=mg,故火星表面的重力加速度与地球表面的重力加速度之比为=×=0.4,故选项B正确.]
8.由我国自主研发的北斗卫星导航系统,空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗地球轨道卫星、3颗倾斜同步轨道卫星.目前已经实现了覆盖亚太地区的定位、导航和授时以及短报文通信服务能力,预计到2020年左右,建成覆盖全球的北斗卫星导航系统.关于其中的静止轨道卫星(同步卫星),下列说法中正确的是()

图5
A.该卫星一定不会运动到杭州正上方天空
B.该卫星处于完全失重状态,卫星所在处的重力加速度为零
C.该卫星若受到太阳风暴影响后速度变小,它的轨道半径将变大
D.该卫星相对于地球静止,其运行速度等于地球赤道处自转的线速度
A[根据同步卫星的定义知,它只能在赤道上空,故A项对;卫星处于完全失重状态,重力加速度等于向心加速度,故B错;速度变小后,万有引力大于所需向心力,卫星的轨道半径将变小,C项错;卫星相对地球静止是指角速度等于地球自转角速度,由v=ωr知,其运行速度大于地球赤道处自转的线速度,故D项错.]
9.如图6所示是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小球穿在光滑细杆上与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O处,当转盘转动的角速度为ω1时,指针指在A处,当转盘转动的角速度为ω2时,指针指在B处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为()

图6
A.B.
C.D.
B[小球随转盘转动时由弹簧的弹力提供向心力.设标尺的最小分度的长度为x,弹簧的劲度系数为k,则有kx=m·4x·ω,k·3x=m·6x·ω,故有ω1∶ω2=1∶,B正确.]
10.如图7所示,我国的气象卫星有两类,一类是极地轨道卫星——风云一号,绕地球做匀速圆周运动的周期为12h,另一类是地球同步轨道卫星——风云二号,绕地球做匀速圆周运动的周期为24h.下列说法正确的是()

图7
A.风云一号的线速度大于风云二号的线速度
B.风云一号的向心加速度小于风云二号的向心加速度
C.风云一号的角速度小于风云二号的角速度
D.风云一号、风云二号相对地面均静止
A[卫星绕地球做匀速圆周运动:G=mr,可知,风云一号卫星的周期和半径均小于风云二号卫星的周期和半径.根据万有引力提供圆周运动向心力G=m,有卫星的线速度v=,所以风云一号卫星的半径小,线速度大,故A正确;根据万有引力提供圆周运动向心力G=ma,有卫星的向心加速度a=G,风云一号的半径小,向心加速度大于风云二号卫星的向心加速度,故B错误;根据万有引力提供圆周运动向心力G=mω2r,解得:ω=,风云一号的半径小,角速度大于风云二号卫星的角速度,故C错误;风云二号是同步卫星,相对地面静止,而风云一号不是同步卫星,相对地面是运动的,故D错误.]
11.(加试要求)如图8所示,两个倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于同一高度处,其中b小球在两斜面之间,a、c两小球在斜面顶端.若同时释放,小球a、b、c到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系错误的是()

图8
A.t1t3t2
B.t1=t1′、t2=t2′、t3=t3′
C.t1′t3′t2′
D.t1t3t2.当平抛三小球时,小球b做平抛运动,竖直方向运动情况同第一种情况;小球a、c在斜面内做类平抛运动,沿斜面向下方向的运动同第一种情况,所以t1=t1′、t2=t2′、t3=t3′.故选D.]
12.(20xx·台州市调研)如图9所示,一小物块以大小为a=4m/s2的向心加速度做匀速圆周运动,半径R=1m,则下列说法正确的是()

图9
A.小物块运动的角速度为2rad/s
B.小物块做圆周运动的周期为2πs
C.小物块在t=s内通过的位移大小为m
D.小物块在πs内通过的路程为零
A[因为a=ω2R,所以小物块运动的角速度ω==2rad/s,周期T==πs,选项A正确,B错误;小物块在s内转过,通过的位移为m,在πs内转过一周,通过的路程为2πm,选项C、D错误.]
13.(加试要求)如图10所示为游乐园中空中转椅的理论示意图.长度不同的两根细绳悬挂于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内做圆锥摆运动,则两个圆锥摆相同的物理量是()

图10
A.周期B.线速度的大小
C.绳的拉力D.向心力
A[对其中一个小球受力分析,如图,受重力、绳子的拉力,由于小球做匀速圆周运动.故合力提供向心力;
将重力与拉力合成,合力指向圆心,由几何关系得,合力:F=mgtanθ①由向心力公式得到:F=mω2r②设球与悬挂点间的竖直高度为h,由几何关系,得:r=htanθ③由①②③三式得,ω=,与绳子的长度和转动半径无关;又由T=,故周期与绳子的长度和转动半径无关,故A正确;由v=ωr,两球转动半径不等,故线速度不同,故B错误;绳子拉力:FT=,故绳子拉力不同,故C错误;由F=ma=mω2r,两球转动半径不等,故向心力不同,故D错误.]
二、非选择题(本题共4小题,共35分)
14.(7分)(20xx·丽水调研)在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:

图11
A.让小球多次从________释放,在一张印有小方格的纸上记下小球经过的一系列位置,如图11中a、b、c、d所示.
B.安装好器材,注意使________,记下平抛初位置O点和过O点的竖直线.
C.取下白纸,以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹.
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是________.
(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=________(用L、g表示),其值是________.(g取9.8m/s2)
【解析】(1)这种方法,需让小球重复同一个平抛运动多次,才能记录出小球的一系列位置,故必须让小球每次由同一位置静止释放.斜槽末端切线水平,小球才会做平抛运动.(3)由Δx=aT2得两点之间的时间间隔T=,所以小球的初速度v0==2代入数据得v0=0.70m/s.
【答案】(1)同一位置静止斜槽末端切线水平
(2)BAC
(3)20.70m/s
15.(8分)(20xx·湖州市联考)如图12所示,小球以15m/s的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.g取10m/s2,tan53°=,求:

图12
(1)小球在空中的飞行时间;
(2)抛出点距落点的高度.
【解析】如图所示.由几何关系知
β=90°-37°=53°.(1)由图得tanβ==,得飞行时间t=tanβ=2s.(2)高度h=gt2=×10×22m=20m.
【答案】(1)2s(2)20m
16.(9分)如图13为“快乐大冲关”节目中某个环节的示意图.参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上水平跑道.选手可视为质点,忽略空气阻力,重力加速度g取10m/s2.

图13
(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;
(2)若选手以速度v1=4m/s水平跳出,求该选手在空中的运动时间.
【解析】(1)若选手以速度v0水平跳出后,能跳在水平跑道上,则水平方向有hsin60°≤v0t,竖直方向有hcos60°=gt2解得v0≥m/s.(2)若选手以速度v1=4m/s水平跳出,因v1

文章来源:http://m.jab88.com/j/68513.html

更多

最新更新

更多