第4讲万有引力与航天
图4-4-4
三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC.若在某一时刻,它们正好运行到同一条直线上,如图4-4-4所示.那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是()
答案:C
2.(2009全国Ⅰ,19)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11Nm2/kg2,由此估算该行星的平均密度约为()
A.1.8×103kg/m3B.5.6×103kg/m3C.1.1×104kg/m3D.2.9×104kg/m3
解析:近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:GMmR2=m2πT2R,由密度、质量和体积关系M=ρ43πR3解两式得:ρ=3πGT2≈5.60×103kg/m3.由已知条件可知该行星密度是地球密度的25/4.7倍,即ρ=5.60×103×254.7kg/m3=2.9×104kg/m3.
答案:D
3.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R和r,则()
A.甲、乙两颗卫星的加速度之比等于R∶r
B.甲、乙两颗卫星所受的向心力之比等于1∶1
C.甲、乙两颗卫星的线速度之比等于1∶1
D.甲、乙两颗卫星的周期之比等于R∶r
解析:由F=GMmR2和M=ρ43πR3可得万有引力F=43GπRmρ,又由牛顿第二定律F=ma可得,A正确.卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B错误.由F=43GπRmρ,F=mv2R可得,选项C错误.由F=43GπRmρ,F=mR4π2T2可知,周期之比为1∶1,故D错误.
答案:A
4.
图4-4-5
为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星经过一年多的绕月运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图4-4-5为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是()
A.可以求出月球表面的重力加速度
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点①处应减速
D.“嫦娥一号”在地面的发射速度大于11.2km/s
解析:根据Gm1m2R2=m24π2T2R,已知卫星的T、R和引力常量G,可以求月球的质量m1;因为不知道“嫦娥一号”卫星的质量,故无法知道月球对“嫦娥一号”卫星的引力,B项错误;在控制点①,卫星要做向心运动,故需要减速,C项正确;11.2km/s是第二宇宙速度,是卫星脱离地球引力的束缚成为太阳的人造行星的最小发射速度,而“嫦娥一号”卫星并不能脱离地球引力的范围,故其发射速度小于11.2km/s,D项错误.
答案:C
5.
图4-4-6
神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成.两星视为质点,不考虑其他天体的影响,A、B围绕两者的连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-4-6所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T.
(1)可见星A所受暗星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);
(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式.
解析:(1)由Gm1m2(r1+r2)2=m1ω2r1=m2ω2r2,可得r1/r2=m2/m1,
又由Gm1m2(r1+r2)2=Gm1m′r21,可解得:m′=m32(m1+m2)2.
(2)由v=2πr1T,得r1=vT2π,再由Gm1m2(r1+r2)2=m1v2r1可得:Gm32(m1+m2)2=v3T2π.
答案:(1)m′=m32(m1+m2)2(2)Gm32(m1+m2)2=v3T2π
1.可以发射一颗这样的人造地球卫星,使其圆轨道()
A.与地球表面上某一纬度线(非赤道)是共面同心圆
B.与地球表面上某一经度线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的
解析:人造卫星绕地球做圆周运动所需的向心力是万有引力提供的,人造卫星受地球的引力一定指向地心,所以任何人造卫星的稳定轨道平面都是通过地心的.A选项所述的卫星不能满足这个条件,A错.B选项所述的卫星虽然满足这个条件,但是由于地球在自转,经线所决定的平面也在转动,这样的卫星又不可能有与地球自转同方向的速度,所以不可能始终在某一经线所决定的平面内,如图所示,故B项也错.无论高低如何,轨道平面与地球赤道平面重合的卫星都是存在的,C选项所述卫星就是地球同步卫星,而D项所述卫星不是同步卫星,故C、D项都对.
答案:CD
2.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为()
A.R03T2B.R031TC.R031T2D.R03T
解析:小行星和地球绕太阳做圆周运动,都是由万有引力提供向心力,有Gm1m2R2=m22πT2R,可知小行星绕太阳运行轨道半径为R=R03T212=R03T2,A正确.
答案:A
3.
图4-4-7
2008年9月27日16时40分,我国航天员翟志刚打开“神舟”七号载人飞船轨道舱舱门,首度实施空间出舱活动,在茫茫太空第一次留下中国人的足迹(如图4-4-7所示).翟志刚出舱时,“神舟”七号的运行轨道可认为是圆周轨道.下列关于翟志刚出舱活动的说法正确的是()
A.假如翟志刚握着哑铃,肯定比举着五星红旗费力
B.假如翟志刚自由离开“神舟”七号,他将在同一轨道上运行
C.假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,他将可能沿竖直线自由落向地球
D.假如“神舟”七号上有着和轮船一样的甲板,翟志刚在上面行走的步幅将比在地面上大
解析:“神舟”七号上的一切物体都处于完全失重状态,受到的万有引力提供向心力,A错B对;假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,将使他对地的速度减小,翟志刚将在较低轨道运动,C错误;由于“神舟”七号上的一切物体都处于完全失重状态,就算“神舟”七号上有着和轮船一样的甲板,翟志刚也几乎不能行走,D错误.
答案:B
4.
图4-4-8
在美国东部时间2009年2月10日上午11时55分(北京时间11日0时55分),美国一颗质量约为560kg的商用通信卫星“铱33”与俄罗斯一颗已经报废的质量约为900kg军用通信卫星“宇宙2251”相撞,碰撞发生的地点在俄罗斯西伯利亚上空,同时位于国际空间站轨道上方434千米的轨道上,如图4-4-8所示.如果将卫星和空间站的轨道都近似看做圆形,则在相撞前一瞬间下列说法正确的是()
A.“铱33”卫星比“宇宙2251”卫星的周期大
B.“铱33”卫星比国际空间站的运行速度大
C.“铱33”卫星的运行速度大于第一宇宙速度
D.“宇宙2251”卫星比国际空间站的角速度小
解析:由题意知两卫星的轨道半径相等且大于空间站的轨道半径,故A项错.又v=GMr,所以“铱33”卫星的运行速度小于空间站的运行速度,第一宇宙速度为地球表面卫星的最大运行速度,故B、C均错.由ω=GMr3可知,半径越小,ω越大,故D正确.
答案:D
5.(20xx杭州七校联考)一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,FN表示人对秤的压力,下列说法中正确的是()
A.g′=0B.g′=R2r2gC.FN=0D.FN=mRrg
解析:做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故FN=0,C正确,D错误;对地球表面的物体,GMmR2=mg,宇宙飞船所在处,GMmr2=mg′,可得:g′=R2r2g,A错误,B正确.
答案:BC
6.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是()
A.天体A、B的质量一定不相等
B.两颗卫星的线速度一定相等
C.天体A、B表面的重力加速度之比等于它们的半径之比
D.天体A、B的密度一定相等
解析:假设某行星有卫星绕其表面旋转,万有引力提供向心力,可得GMmR2=m4π2T2R,那么该行星的平均密度为ρ=MV=M43πR3=3πGT2卫星的环绕速度v=GMR,表面的重力加速度g=GMR2=G4ρπR3,所以正确答案是CD.
答案:CD
7.2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”飞船在中国酒泉卫星发射中心发射成功.9月27日翟志刚成功实施了太空行走.如果“神舟七号”飞船在离地球表面h高处的轨道上做周期为T的匀速圆周运动,已知地球的半径R,万有引力常量为G.在该轨道上,“神舟七号”航天飞船()
A.运行的线速度大小为2πhT
B.运行的线速度小于第一宇宙速度
C.运行时的向心加速度大小为4π2(R+h)T2
D.地球表面的重力加速度大小可表示为4π2(R+h)3T2R2
解析:本题考查天体运动和万有引力定律的应用.由于飞船的轨道半径为R+h,故A项错误;第一宇宙速度是环绕的最大速度,所以飞船运行的速度小于第一宇宙速度,B项正确;运行的向心加速度为a=4π2(R+h)T2,C项正确;在地球表面mg=GMmR2,对飞船GMm(R+h)2=m4π2T2(R+h),所以地球表面的重力加速度g=4π2(R+h)3T2R2,D项正确.
答案:BCD
8.
图4-4-9
2008年9月我国成功发射“神舟七号”载人航天飞船.如图4-4-9为“神舟七号”绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的120.已知地球半径为R,地面附近的重力加速度为g,大西洋星距地面的高度约为地球半径的6倍.设飞船、大西洋星绕地球均做匀速圆周运动.则()
A.“神舟七号”飞船在轨运行的加速度为0.91g
B.“神舟七号”飞船在轨运行的速度为gR
C.大西洋星在轨运行的角速度为g343R
D.大西洋星在轨运行的周期为2π343Rg
解析:“神舟七号”飞船在轨运行时,由牛顿第二定律得GMm1(R+h)2=m1a=m1v2(R+h),h=R20,由物体在地球表面受到的万有引力近似等于物体重力得:GM=gR2,所以有a=400441g=0.91g,v=20gR21,故A正确.大西洋星绕地球做匀速圆周运动时,由牛顿第二定律得GMm2(R+h′)2=m2(R+h′)ω2=m2(R+h′)4π2T2,且h′=6R,所以有ω=g343R,T=2π343Rg,故CD正确.
答案:ACD
9.(2009福建,14)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时()
A.r、v都将略为减小B.r、v都将保持不变
C.r将略为减小,v将略为增大D.r将略为增大,v将略为减小
解析:当探测器飞越月球上一些环形山中的质量密集区的上空时,相当于探测器和月球重心间的距离变小了,由万有引力定律F=Gm1m2r2可知,探测器所受月球的引力将增大,这时的引力略大于探测器以原来轨道半径运行所需要的向心力,探测器将做靠近圆心的运动,使轨道半径略为减小,而且月球的引力对探测器做正功,使探测器的速度略微增加,故A、B、D选项错误,C选项正确.
答案:C
10.
图4-4-10
如图4-4-10是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是()
A.发射“嫦娥一号”的速度必须达到第三宇宙速度
B.在绕月圆轨道上,卫星周期与卫星质量有关
C.卫星受月球的引力与它到月球中心距离的平方成反比
D.在绕月圆轨道上,卫星受地球的引力大于受月球的引力
解析:本题考查了与万有引力定律相联的多个知识点,如万有引力公式、宇宙速度、卫星的周期等,设问角度新颖.第三宇宙速度是卫星脱离太阳系的最小发射速度,所以“嫦娥一号”卫星的发射速度一定小于第三宇宙速度,A项错误;设卫星轨道半径为r,由万有引力定律知卫星受到的引力F=GMmr2,C项正确.设卫星的周期为T,由GMmr2=m4π2T2r得T2=4π2GMr3,所以卫星的周期与月球质量有关,与卫星质量无关,B项错误.卫星在绕月轨道上运行时,由于离地球很远,受到地球引力很小,卫星做圆周运动的向心力主要是月球引力提供,D错误.
答案:C
11.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原地.(取地球表面重力加速度g=10m/s2,阻力不计)
(1)求该星球表面附近的重力加速度g′;
(2)已知该星球的半径与地球半径之比为R星∶R地=1∶4,求该星球的质量与地球质量之比M星∶M地.
解析:(1)设竖直上抛初速度为v0,则v0=gt/2=g′5t/2,故g′=15g=2m/s2.
(2)设小球质量为m,则mg=GMmR2M=gR2G,故M星M地=g′R2星gR2地=15×116=180.
答案:(1)2m/s2(2)180
12.
图4-4-11
欧盟和我国合作的“伽利略”全球卫星定位系统的空间部分由平均分布在三个轨道平面上的30颗轨道卫星构成,每个轨道平面上有10颗卫星,从而实现高精度的导航定位.现假设“伽利略”系统中每颗卫星均围绕地心O做匀速圆周运动,轨道半径为r,一个轨道平面上某时刻10颗卫星所在位置如图4-4-11所示,相邻卫星之间的距离相等,卫星1和卫星3分别位于轨道上A、B两位置,卫星按顺时针运行.地球表面重力加速度为g,地球的半径为R,不计卫星间的相互作用力.求卫星1由A位置运行到B位置所需要的时间.
解析:设地球质量为M,卫星质量为m,每颗卫星的运行周期为T,万有引力常量为G,由万有引力定律和牛顿定律有GmMr2=mr2πT2①
地球表面重力加速度为g=GMR2②
联立①②式可得T=2πRr3g③
卫星1由A位置运行到B位置所需要的时间为t=210T④
联立③④式可得t=2π5Rr3g.
答案:2π5Rr3g
高三物理《万有引力与航天》教材分析
考点16万有引力与航天
考点名片
考点细研究:要点:以万有引力定律为基础的行星、卫星匀速圆周运动模型及其应用;双星模型、估算天体的质量和密度等;以开普勒三定律为基础的椭圆运行轨道及卫星的发射与变轨、能量等相关内容;万有引力定律与地理、数学、航天等知识的综合应用。
备考正能量:高考对本考点的命题比较固定,基本是一个选择题,个别省份有填空题和计算题出现。考点内容与人造卫星、载人航天、探月计划等热点话题密切联系,考查的频率也越来越高,应密切关注。
一、基础与经典
1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
答案C
解析由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误。火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误。根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确。对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误。
2.关于万有引力定律,下列说法正确的是()
A.牛顿提出了万有引力定律,并测定了引力常量的数值
B.万有引力定律只适用于天体之间
C.万有引力的发现,揭示了自然界一种基本相互作用的规律
D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的
答案C
解析万有引力存在于一切物体间,B错误;牛顿提出万有引力定律,卡文迪许测定了万有引力恒量,A错误;万有引力是自然界的一种基本相互作用,它与距离的平方成反比,故C正确,D错误。
3.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上。某时刻四颗卫星的运行方向及位置如图所示。下列说法中正确的是()
A.a、c的加速度大小相等,且大于b的加速度
B.b、c的角速度大小相等,且小于a的角速度
C.a、c的线速度大小相等,且小于d的线速度
D.a、c存在在P点相撞的危险
答案A
解析由图可知:ra=rcab,A正确。G=m=mω2r=ma,可知,B、C错误;a、c周期相同,故不可能同时到达同一位置,D错误。
4.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆。设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()
A.T卫T月
C.T卫r同r卫,由开普勒第三定律=k可知,T月T同T卫,又同步卫星的周期T同=T地,故有T月T地T卫,选项A、C正确。
5.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()
A.距地面的高度变大B.向心加速度变大
C.线速度变大D.角速度变大
答案A
解析根据G=m2r可知r=,若T增大,r增大,h=r-R,故A正确。根据a=可知,r增大,a减小,B错误。根据G=可得v=,r增大,v减小,C错误。ω=,T增大,ω减小,D错误。
6.某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径之比为()
A.B.
C.D.
答案B
解析地球公转周期T1=1年,设T2为行星的公转周期,每过N年,行星会运行到日地连线的延长线上,即地球比该行星多转一圈,有N-N=2π,解得:T2=年,故行星与地球的公转周期之比为;由G=mr得:=,即rT,故行星与地球的公转半径之比为,B正确。
7.(多选)“神舟九号”飞船与“天宫一号”成功对接,在飞船完成任务后返回地面,要在A点从圆形轨道进入椭圆轨道,B为轨道上的一点,如图所示,关于“神舟九号”的运动,下列说法中正确的有()
A.在轨道上经过A的速度小于经过B的速度
B.在轨道上经过A的速度小于在轨道上经过A的速度
C.在轨道上运动的周期小于在轨道上运动的周期
D.在轨道上经过A的加速度小于在轨道上经过A的加速度
答案ABC
解析“神舟九号”飞船在轨道上经过远地点A的速度小于经过近地点B的速度,选项A正确;飞船从圆形轨道进入椭圆轨道,需要在A点减速,选项B正确;由开普勒第三定律=k可知,轨道半长轴越长周期越长,轨道上的周期小于轨道上的运动周期,选项C正确;a=可知,rA不变,所以在轨道上经过A的加速度等于在轨道上经过A的加速度,选项D错误。
8.(多选)设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()
A.=B.=C.=D.=
答案BD
解析地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R可得,=,B项正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供向心力,即m=;m=,得=,D项正确。
9.(多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称为双星系统。在浩瀚的银河系中,多数恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。若,则()
A.星球A的质量一定大于B的质量
B.星球A的线速度一定大于B的线速度
C.双星间距离一定,双星的质量越大,其转动周期越大
D.双星的质量一定,双星之间的距离越大,其转动周期越大
答案BD
解析设双星质量分别为mA、mB,轨道半径为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知:=mAω2RA,=mBω2RB,又有RA+RB=L,可得=,G(mA+mB)=ω2L3。由知,mAvB,B正确。由T=及G(mA+mB)=ω2L3可知C错误,D正确。
10.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。根据这些条件,可以求出的物理量是()
A.太阳的密度
B.该行星的第一宇宙速度
C.该行星绕太阳运行的周期
D.卫星绕该行星运行的最小周期
答案BD
解析由v=2gH,得该行星表面的重力加速度g=
根据mg=m=mR,解得该行星的第一宇宙速度v=,卫星绕该行星运行的最小周期T=,所以B、D正确;因不知道行星绕太阳运动的任何量,故不能算太阳的密度和该行星绕太阳运动的周期,所以A、C错误。
二、真题与模拟
11.20xx·全国卷]关于行星运动的规律,下列说法符合史实的是()
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
答案B
解析行星运动的规律是开普勒在第谷长期观察行星运动数据的基础上总结归纳出来的,并不是在牛顿运动定律的基础上导出的,但他并没有找出行星按这些规律运动的原因,A、C错误,B正确。牛顿发现了万有引力定律,D错误。
12.20xx·江苏高考](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、Ek、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。下列关系式正确的有()
A.TATBB.EkAEkB
C.SA=SBD.=
答案AD
解析卫星做圆周运动,万有引力提供向心力,即G=m=mR2,得v=,T=2π,由于RARB可知,TATB,vAa1a3B.a3a2a1
C.a3a1a2D.a1a2a3
答案D
解析对于东方红一号卫星,在远地点由牛顿第二定律可知=m1a1,即a1=(r1=2060km)。对于东方红二号卫星,由牛顿第二定律可知=m2a2,即a2=(r2=35786km)。因为r1a2,由圆周运动规律可知,对东方红二号卫星:a2=r2,对地球赤道上的物体:a3=R,因为r2R,所以a2a3,综上可得a1a2a3,D正确。
15.20xx·天津高考]我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案C
解析卫星绕地球做圆周运动,满足G=。若加速,则会造成G,卫星将做离心运动,向外跃迁。因此要想使两卫星对接绝不能同轨道加速或减速,只能从低轨道加速或从高轨道减速,C正确,A、B、D错误。
16.20xx·广东高考](多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为101,半径比约为21。下列说法正确的有()
A.探测器的质量越大,脱离星球所需要的发射速度越大
B.探测器在地球表面受到的引力比在火星表面的大
C.探测器分别脱离两星球所需要的发射速度相等
D.探测器脱离星球的过程中,势能逐渐增大
答案BD
解析由G=m得,v=,则有v=,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D项正确。
17.20xx·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()
A.0B.C.D.
答案B
解析对飞船进行受力分析,可得G=mg,得g=,B项正确。
18.20xx·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕。“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的。该中心恒星与太阳的质量比约为()
A.B.1C.5D.10
答案B
解析行星绕恒星做匀速圆周运动,万有引力提供向心力,由G=mr2,得M=,则该中心恒星的质量与太阳的质量之比=·=3×=1.04,B项正确。
19.20xx·全国卷](多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则此探测器()
A.在着陆前的瞬间,速度大小约为8.9m/s
B.悬停时受到的反冲作用力约为2×103N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
答案BD
解析由题述地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,由公式G=mg,可得月球表面的重力加速度约为地球表面重力加速度的,即g月=1.6m/s2,由v2=2g月h,解得此探测器在着陆瞬间的速度v≈3.6m/s,选项A错误;由平衡条件可得悬停时受到的反冲作用力约为F=mg月=1.3×103×1.6N≈2×103N,选项B正确;从离开近月圆轨道到着陆这段时间,由于受到了反冲作用力,且反冲作用力对探测器做负功,所以探测器机械能减小,选项C错误;由G=m,G=mg,解得v=,由于地球半径和地球表面的重力加速度均大于月球,所以探测器在近月轨道上运行的线速度要小于人造卫星在近地轨道上运行的线速度,选项D正确。
20.20xx·山东高考]如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是()
A.a2a3a1B.a2a1a3
C.a3a1a2D.a3a2a1
答案D
解析因空间站建在拉格朗日点,所以月球与空间站绕地球转动的周期相同,空间站半径小,由a=ω2r得a1a2a1,选项D正确。
一、基础与经典
21.宇航员驾驶宇宙飞船到达月球表面,关闭动力,飞船在近月圆形轨道绕月运行的周期为T;接着,宇航员调整飞船动力,安全着陆,宇航员在月球表面离地某一高度处将一质量为m的小球以初速度v0水平抛出,其水平射程为s。已知月球的半径为R,引力常量为G,求:
(1)月球的质量M;
(2)小球开始抛出时离地的高度;
(3)小球落地时重力的瞬时功率。
答案(1)(2)(3)
解析(1)飞船在近月圆形轨道上运动时,月球对飞船的万有引力提供向心力,有G=mR2,
解得月球的质量M=。
(2)小球做平抛运动,水平方向做匀速直线运动,有s=v0t,
竖直方向做自由落体运动,有h=gt2,
在月球表面,小球受到月球的万有引力近似等于重力,有
G=mR2=mg,
联立解得小球开始抛出时离地的高度为h=。
(3)小球落地时速度的竖直分量为v=gt=,
重力的瞬时功率为P=mgv=m·=。
22.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O点始终共线,A和B分别在O点的两侧。引力常量为G。
(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者的平方之比。(结果保留3位小数)
答案(1)2π(2)1.012
解析(1)A和B绕O点做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等,且A、B的中心和O点始终共线,说明A和B组成双星系统且有相同的角速度和周期。设A、B做圆周运动的半径分别为r、R,则有
mω2r=Mω2R,r+R=L,
联立解得R=L,r=L,
对A,根据牛顿第二定律和万有引力定律得
=m2L,
解得T=2π。
(2)由题意,可以将地月系统看成双星系统,由(1)得
T1=2π,
若认为月球绕地心做圆周运动,则根据牛顿第二定律和万有引力定律得
=m2L,
解得T2=2π,
所以T2与T1的平方之比为
===1.012。
二、真题与模拟
23.20xx·天津高考]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数为F0。
a.若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留2位有效数字);
b.若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径r、太阳的半径为RS和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
答案(1)a.=0.98b.=1-
(2)与现实地球的1年时间相同
解析(1)设小物体质量为m。
a.在北极地面G=F0,在北极上空高出地面h处
G=F1,
得=,h=1.0%R时,=≈0.98。
b.在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G-F2=mR,
得=1-。
(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为MS,地球质量为M,地球公转周期为TE,有G=M,得TE==,其中ρS为太阳的密度。
由上式可知,地球公转周期TE仅与太阳的密度、地球公转轨道半径与太阳半径之比有关。因此“设想地球”的1年与现实地球的1年时间相同。
24.20xx·云南重点中学联考]有一质量为m的航天器靠近地球表面绕地球做匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是21,经过远地点和经过近地点的速度之比为12。已知地球半径为R,地球表面重力加速度为g。
(1)求航天器在靠近地球表面绕地球做圆周运动时的周期T;
(2)求航天器靠近地球表面绕地球做圆周运动时的动能;
(3)在从近地点运动到远地点的过程中航天器克服地球引力所做的功为多少?
答案(1)2π(2)mgR(3)mgR
解析(1)由牛顿第二定律mg=m2R,
解得T=2π。
(2)设航天器靠近地球表面绕地球做圆周运动时的速度为v1,由mg=m,解得Ek1=mv=mgR。
(3)由题意,喷气后航天器在近地点的动能为Ek2=Ek1=mgR,
航天器在远地点的动能为Ek3=Ek2=mgR。
由动能定理得航天器克服地球引力所做的功为
W=Ek2-Ek3=mgR。
俗话说,居安思危,思则有备,有备无患。作为高中教师就要好好准备好一份教案课件。教案可以让上课时的教学氛围非常活跃,帮助高中教师能够更轻松的上课教学。写好一份优质的高中教案要怎么做呢?下面是小编为大家整理的“20xx高考物理复习知识点:万有引力定律”,仅供您在工作和学习中参考。
20xx高考物理复习知识点:万有引力定律
万有引力定律
(1)万有引力定律:宇宙间的一切物体都是互相吸引的。两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
公式:
20xx高考物理二轮复习知识点
(2)★★★应用万有引力定律分析天体的运动
①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。即F引=F向得:
20xx高考物理二轮复习知识点
应用时可根据实际情况选用适当的公式进行分析或计算。②天体质量M、密度ρ的估算:
20xx高考物理二轮复习知识点
(3)三种宇宙速度
①第一宇宙速度:v1=7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度。
②第二宇宙速度(脱离速度):v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度。
③第三宇宙速度(逃逸速度):v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度。
(4)地球同步卫星
所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度
20xx高考物理二轮复习知识点
同步卫星的轨道一定在赤道平面内,并且只有一条。所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着。
(5)卫星的超重和失重
“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同。“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用。
第1节曲线运动运动的合成与分解
一、曲线运动
1.运动特点
(1)速度方向:质点在某点的速度,沿曲线上该点的切线方向.
(2)运动性质:做曲线运动的物体,速度的方向时刻改变,所以曲线运动一定是变速运动,即必然具有加速度.
2.曲线运动的条件
(1)从动力学角度看:物体所受合力的方向跟它的速度方向不在同一条直线上.
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上.
二、运动的合成与分解
1.基本概念
分运动????运动的合成运动的分解合运动
2.分解原则
根据运动的实际效果分解,也可采用正交分解.
3.运算法则
位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.
4.合运动和分运动的关系
(1)等时性:合运动与分运动经历的时间相等.
(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.
(3)等效性:各分运动叠加起来与合运动有完全相同的效果.
[自我诊断]
1.判断正误
(1)速度发生变化的运动,一定是曲线运动.(×)
(2)做曲线运动的物体加速度一定是变化的.(×)
(3)做曲线运动的物体速度大小一定发生变化.(×)
(4)曲线运动可能是匀变速运动.(√)
(5)两个分运动的时间一定与它们的合运动的时间相等.(√)
(6)合运动的速度一定比分运动的速度大.(×)
(7)只要两个分运动为直线运动,合运动一定是直线运动.(×)
(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则.(√)
2.下列说法正确的是()
A.各分运动互相影响,不能独立进行
B.合运动的时间一定比分运动的时间长
C.合运动和分运动具有等时性,即同时开始、同时结束
D.合运动的位移大小等于两个分运动位移大小之和
解析:选C.各分运动具有独立性,A错误;合运动与分运动具有等时性,B错误,C正确;合运动的位移与分运动的位移满足矢量合成的法则,D错误.
3.(多选)某质点在光滑水平面上做匀速直线运动.现对它施加一个水平恒力,则下列说法正确的是()
A.施加水平恒力以后,质点可能做匀加速直线运动
B.施加水平恒力以后,质点可能做匀变速曲线运动
C.施加水平恒力以后,质点可能做匀速圆周运动
D.施加水平恒力以后,质点立即有加速度,速度也立即变化
解析:选AB.当水平恒力的方向与速度的方向在同一条直线上时,质点做匀变速直线运动,选项A正确;当水平恒力的方向与速度的方向不在同一条直线上时,质点做匀变速曲线运动,选项B正确;无论力的方向与速度的方向关系如何,质点都不可能做匀速圆周运动,选项C错误;速度不能发生突变,选项D错误.
4.(多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则()
A.越接近河岸水流速度越小
B.越接近河岸水流速度越大
C.无论水流速度是否变化,这种渡河方式耗时最短
D.该船渡河的时间会受水流速度变化的影响
解析:选AC.由船的运动轨迹可知,小船渡河过程是先做加速运动后做减速运动.河流的中心水流速度最大,越接近河岸水流速度越小,故A正确,B错误;由于船头垂直河岸,则这种方式过河的时间最短,C正确;船过河的时间与水流速度无关,D错误.
考点一物体做曲线运动的条件与轨迹分析
1.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向,图中M、N、P、Q表示物体运动的轨迹,其中正确的是()
解析:选B.物体运动的速度方向与运动轨迹一定相切,而且合外力F的方向一定指向轨迹的凹侧,故只有B正确.
2.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()
A.质点经过C点的速率比D点的大
B.质点经过A点时的加速度方向与速度方向的夹角小于90°
C.质点经过D点时的加速度比B点的大
D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小
解析:选A.质点做匀变速曲线运动,所以加速度不变;由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,所以C点速率比D点大.
3.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,将F1突然增大为2F1,则此后质点()
A.不一定做曲线运动
B.一定做匀变速运动
C.可能做匀速直线运动
D.可能做匀变速直线运动
解析:选B.F1增大前,质点沿合力方向做匀加速直线运动.F1增大后,合力方向与F1增大之前的质点的速度方向不共线,因而做曲线运动.由于二力方向不变,只将F1增大为2F1,所以合力恒定,质点做匀变速曲线运动.故本题答案为B.
考点二运动的合成与分解的应用
1.合运动与分运动的关系
(1)等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).
(2)等效性:各分运动叠加起来与合运动有相同的效果.
(3)独立性:一个物体同时参与几个运动,其中的任何一个都会保持其运动性质不变,并不会受其他分运动的干扰.虽然各分运动互相独立,但是它们共同决定合运动的性质和轨迹.
2.运动的合成与分解的运算法则
运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.
3.合运动性质的判断
加速度恒定:匀变速运动变化:非匀变速运动加速度方向与速度方向共线:直线运动不共线:曲线运动
题组一合运动性质的判断
1.(20xx江苏连云港模拟)(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧沿与水平方向成30°角的斜面向右上以速度v匀速运动,运动中始终保持悬线竖直,下列说法正确的是()
A.橡皮的速度大小为2v
B.橡皮的速度大小为3v
C.橡皮的速度与水平方向成60°角
D.橡皮的速度与水平方向成45°角
解析:选BC.橡皮斜向右上方运动,具有沿斜面向上的分速度,与钉子沿斜面向上的速度相等,即为v;橡皮还具有竖直向上的分速度,大小也等于v;其实际速度大小(合速度)是两个分速度的合成,如图所示.故橡皮的实际速度大小(合速度):v′=2vcos30°=3v,且与水平方向成60°角,A、D错误,B、C正确.
2.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为()
A.西偏北方向,1.9×103m/s
B.东偏南方向,1.9×103m/s
C.西偏北方向,2.7×103m/s
D.东偏南方向,2.7×103m/s
解析:选B.设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1vcos30°,代入数据解得v2≈1.9×103m/s.选项B正确.
题组二与运动图象结合的合成与分解问题
3.物体在直角坐标系xOy所在的平面内由O点开始运动,其沿坐标轴方向的两个分速度随时间变化的图象如图所示,则对该物体运动过程的描述正确的是()
A.物体在0~3s做直线运动
B.物体在3s~4s做直线运动
C.物体在3s~4s做曲线运动
D.物体在0~3s做变加速运动
解析:选B.物体在0~3s内,x方向做匀速直线运动,y方向做匀加速直线运动,两运动的合运动,一定是曲线运动,且加速度恒定,则A、D错误;物体在3s~4s内两个方向的分运动都是匀减速运动,在3s末,速度与x轴的夹角tanθ=vyvx=34,加速度与x轴的夹角tanβ=ayax=34,因此合速度与合加速度方向相反,则做直线运动,故B正确,C错误.
4.有一个质量为2kg的质点在xy平面上运动,在x方向的速度图象和y方向的位移图象分别如图甲、乙所示,下列说法正确的是()
A.质点所受的合力为3N
B.质点的初速度为3m/s
C.质点做匀变速直线运动
D.质点初速度的方向与合力的方向垂直
解析:选A.由题图乙可知,质点在y方向上做匀速运动,vy=ΔxΔt=-4m/s,在x方向上做匀加速直线运动,a=ΔvΔt=1.5m/s2,故质点所受合力F=ma=3N,A正确;质点的初速度v=vx02+v2y=5m/s,B错误;质点做匀变速曲线运动,C错误;质点初速度的方向与合力的方向不垂直,如图所示,θ=53°,D错误.
考点三小船渡河问题
1.小船渡河问题的速度
(1)船的实际运动是水流的运动和船相对静水的运动的合运动.
(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).
2.小船渡河的三种情景
(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).
(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cosα=v2v1.
(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cosα=v1v2,最短航程:s短=dcosα=v2v1d.
1.(20xx湖北省重点中学联考)(多选)一只小船在静水中的速度为3m/s,它要渡过一条宽为30m的河,河水流速为4m/s,则这只船()
A.过河时间不可能小于10s
B.不能沿垂直于河岸方向过河
C.渡过这条河所需的时间可以为6s
D.不可能渡过这条河
解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30m,而垂直河岸方向的最大分速度即船自身的速度3m/s,所以渡河最短时间t=d3m/s=10s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.
2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()
A.kvk2-1B.v1-k2
C.kv1-k2D.vk2-1
解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.
3.(20xx四川绵阳质检)小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10min到达对岸下游120m处;若船头保持与河岸成α角向上游航行,出发后12.5min到达正对岸.求:
(1)水流的速度;
(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.
解析:(1)船头垂直对岸方向航行时,如图甲所示.
由x=v2t1得v2=xt1=120600m/s=0.2m/s①
(2)船头保持与岸成α角航行时,如图乙所示.
由(1)可得d=v1t1
v2=v1cosα②
d=v1t2sinα③
联立解得α=53°,v1=0.33m/s,d=200m
答案:(1)0.2m/s(2)0.33m/s200m53°
(1)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关.
(2)船渡河位移最小值与v船和v水大小关系有关,v船>v水时,河宽即为最小位移,v船<v水时,应利用图解法求极值的方法处理.
考点四关联速度问题
1.问题特点:沿绳(或杆)方向的速度分量大小相等.
2.思路与原则
(1)思路
①明确合速度→物体的实际运动速度v;
(2)原则:v1与v2的合成遵循平行四边形定则.
3.解题方法
把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.
1.在距河面高度h=20m的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3m/s拉绳,使小船靠岸,那么()
A.5s时绳与水面的夹角为60°
B.5s后小船前进了15m
C.5s时小船的速率为4m/s
D.5s时小船到岸边的距离为15m
解析:选D.设开始时小船距岸边为L,则L=htan30°=203m,5s后绳端沿岸位移为x=vt=3×5m=15m,设5s后小船前进了x′,绳与水平面的夹角为θ,由几何关系得sinθ=h2h-x=202×20-15=0.8,解得θ=53°,选项A错误;由tanθ=hL-x′,解得x′=19.64m,选项B错误;由v船cosθ=v可得此时小船的速率为v船=5m/s,选项C错误;5s时小船到岸边的距离为L-x′=203m-19.64m=15m,选项D正确.
2.如图所示,物体A、B经无摩擦的定滑轮用细线连在一起,A物体受水平向右的力F的作用,此时B匀速下降,A水平向左运动,可知()
A.物体A做匀速运动
B.物体A做加速运动
C.物体A所受摩擦力逐渐增大
D.物体A所受摩擦力不变
解析:选B.设系在A上的细线与水平方向夹角为θ,物体B的速度为vB,大小不变,细线的拉力为FT,则物体A的速度vA=vBcosθ,FfA=μ(mg-FTsinθ),因物体下降,θ增大,故vA增大,物体A做加速运动,A错误,B正确;物体B匀速下降,FT不变,故随θ增大,FfA减小,C、D均错误.
3.(20xx上海四区联考)如图所示,长为L的直棒一端可绕固定轴O转动,另一端搁在升降平台上,平台以速度v匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为()
A.vsinαLB.vLsinα
C.vcosαLD.vLcosα
解析:选B.棒与平台接触点的实际运动即合运动的速度方向是垂直于棒指向左上方,合速度沿竖直向上方向上的速度分量等于v,即ωLsinα=v,所以ω=vLsinα.
课时规范训练
[基础巩固题组]
1.精彩的F1赛事相信你不会陌生吧!车王舒马赫在一个弯道上突然调整行驶的赛车致使后轮脱落,从而不得不遗憾地退出了比赛.关于脱落的后轮的运动情况,以下说法中正确的是()
A.仍然沿着汽车行驶的弯道运动
B.沿着与弯道垂直的方向飞出
C.脱落时,沿着轮子前进的方向做直线运动,离开弯道
D.上述情况都有可能
解析:选C.车轮被甩出后,不再受到车身的约束,被甩出的后轮沿甩出时的速度方向(即甩出点轨迹的切线方向)做直线运动,轮不可能沿车行驶的弯道运动,也不可能沿垂直于弯道的方向运动.故本题答案为C.
2.某电视台举办了一期群众娱乐节目,其中有一个环节是让群众演员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球.如果群众演员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中平台内箭头指向表示投篮方向)()
解析:选B.篮球若能被投入球筐,其合速度的方向应指向圆心,因平台逆时针旋转,所以投篮方向应是如图B所示,选项B正确.
3.跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是()
A.风力越大,运动员下落时间越长,运动员可完成更多的动作
B.风力越大,运动员着地时的竖直速度越大,有可能对运动员造成伤害
C.运动员下落时间与风力无关
D.运动员着地速度与风力无关
解析:选C.水平风力不会影响竖直方向的运动,所以运动员下落时间与风力无关,A错误,C正确;运动员落地时竖直方向的速度是确定的,水平风力越大,落地时水平分速度越大,则运动员着地时的合速度越大,有可能对运动员造成伤害,B、D错误.
4.(多选)如图,在河水速度恒定的小河中,一小船保持船头始终垂直河岸从一侧岸边向对岸行驶,船的轨迹是一个弯曲的“S”形,则()
A.小船垂直河岸的速度大小恒定不变
B.小船垂直河岸的速度大小先增大后减小
C.与船以出发时的速度匀速过河相比,过河时间长了
D.与船以出发时的速度匀速过河相比,过河时间短了
解析:选BD.船在沿河岸的方向上做匀速直线运动,即在相同的时间间隔内,在河岸方向上的位移是相同的;在垂直于河岸的方向上,在相等的时间间隔内(参照船在沿河岸方向上的时间),开始时位移的变化逐渐增大再逐渐减小,所以速度先增大后减小;因中间那段时间速度较大,所以与船保持恒定的初始速度过河相比过河时间短了.选项B、D正确.
5.(多选)如右图所示,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,在消防车向前前进的过程中,人同时相对梯子匀速向上运动.在地面上看消防队员的运动,下列说法中正确的是()
A.当消防车匀速前进时,消防队员一定做匀加速直线运动
B.当消防车匀速前进时,消防队员一定做匀速直线运动
C.当消防车匀加速前进时,消防队员一定做匀变速曲线运动
D.当消防车匀加速前进时,消防队员一定做匀变速直线运动
解析:选BC.当消防车匀速前进时,消防队员一定做匀速直线运动,选项A错误,B正确;当消防车匀加速前进时,消防队员一定做匀变速曲线运动,选项C正确,D错误.
6.如图所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为()
A.vsinαB.vsinα
C.vcosαD.vcosα
解析:选C.人的速度为合速度,当人沿平直的河岸以速度v行走时,可将人的速度分解为沿绳方向的分速度和垂直于绳方向的分速度,沿绳方向的分速度即为船行驶的速度,故船的速度为vcosα,选项C正确.
7.如图所示,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A环上升至与定滑轮的连线水平时,其上升速度v1≠0,若这时B的速度为v2,则()
A.v2=0B.v2>v1
C.v2≠0D.v2=v1
解析:选A.环A在虚线位置时,环A的速度沿虚线方向的分速度为零,故物体B的速度v2=0,A正确.
[综合应用题组]
8.(多选)一快艇要从岸边某一不确定位置处到达河中离岸边100m远的一浮标处,已知快艇始终与河岸垂直,其在静水中的速度vx图象和流水的速度vy图象分别如图甲、乙所示,则()
A.快艇的运动轨迹为直线
B.快艇的运动轨迹为曲线
C.能找到某一位置使快艇最快到达浮标处的时间为20s
D.快艇最快到达浮标处经过的位移为100m
解析:选BC.快艇沿河岸方向的匀速运动与垂直于河岸的匀加速运动的合运动是类平抛性质的曲线运动,A错误,B正确;最快到达浮标处的方式是使垂直于河岸的速度vx保持图甲所示的加速度a=0.5m/s2的匀加速运动,则12at2=xx,代入xx=100m有t=20s,但实际位移为x=x2x+x2y>100m,C正确,D错误.
9.质量m=4kg的质点静止在光滑水平面上的直角坐标系的原点O处,先用沿+x轴方向的力F1=8N作用了2s,然后撤去F1;再用沿+y轴方向的力F2=24N作用了1s,则质点在这3s内的轨迹为()
解析:选D.由F1=max得ax=2m/s2,质点沿x轴匀加速直线运动了2s,x1=12axt21=4m,vx1=axt1=4m/s;之后质点受F2作用而做类平抛运动,ay=F2m=6m/s2,质点再经过1s,沿x轴再运动,位移x2=vx1t2=4m,沿+y方向运动位移y2=12ayt22=3m,对应图线可知D项正确.
10.如图,船从A处开出后沿直线AB到达对岸,若AB与河岸成37°角,水流速度为4m/s,则船从A点开出相对水流的最小速度为()
A.2m/sB.2.4m/s
C.3m/sD.3.5m/s
解析:选B.船参与了两个分运动,沿船头指向的分运动和顺水流而下的分运动,其中,合速度v合方向已知,大小未知,顺水流而下的分运动速度v水的大小和方向都已知,沿船头指向的分运动的速度v船大小和方向都未知,合速度与分速度遵循平行四边形定则(或三角形定则),如图,当v合与v船垂直时,v船最小,由几何关系得到v船的最小值为v船min=v水sin37°=2.4m/s,选项B正确.
11.在一个光滑水平面内建立平面直角坐标系xOy,质量为1kg的物体原来静止在坐标原点O(0,0),t=0时受到如图所示随时间变化的外力作用,图甲中Fx表示沿x轴方向的外力,图乙中Fy表示沿y轴方向的外力,下列描述正确的是()
A.0~4s内物体的运动轨迹是一条直线
B.0~4s内物体的运动轨迹是一条抛物线
C.前2s内物体做匀加速直线运动,后2s内物体做匀加速曲线运动
D.前2s内物体做匀加速直线运动,后2s内物体做匀速圆周运动
解析:选C.0~2s内物体沿x轴方向做初速度为零的匀加速直线运动,2s时受沿y轴方向的恒力作用,与速度方向垂直,故2~4s内物体做类平抛运动,C项正确.
12.(多选)如图所示,某同学在研究运动的合成时做了如图所示活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是()
A.笔尖做匀速直线运动
B.笔尖做匀变速直线运动
C.笔尖做匀变速曲线运动
D.笔尖的速度方向与水平方向夹角逐渐变小
解析:选CD.由题意知笔尖做匀变速曲线运动,A、B错误,C正确;笔尖的速度方向为合速度方向,右手沿水平方向的速度逐渐增大,则合速度方向与水平方向夹角逐渐变小,D正确.
13.如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A物体以速度v向左运动时,系A、B的绳分别与水平方向成α、β角,此时B物体的速度大小为()
A.vsinα/sinβB.vcosα/sinβ
C.vsinα/cosβD.vcosα/cosβ
解析:选D.根据A、B两物体的运动情况,将两物体此时的速度v和vB分别分解为两个分速度v1(沿绳的分量)和v2(垂直绳的分量)以及vB1(沿绳的分量)和vB2(垂直绳的分量),由于两物体沿绳的速度分量相等,v1=vB1,即vcosα=vBcosβ,则B物体的速度方向水平向右,其大小为vB=cosαcosβv,D正确.
14.如图所示,在一次抗洪救灾工作中,一架直升机A用一长H=50m的悬索(重力可忽略不计)系住伤员B,直升机A和伤员B一起在水平方向上以v0=10m/s的速度匀速运动的同时,悬索在竖直方向上匀速上拉.在将伤员拉到直升机内的时间内,A、B之间的竖直距离以l=50-5t(单位:m)的规律变化,则()
A.伤员经过5s时间被拉到直升机内
B.伤员经过10s时间被拉到直升机内
C.伤员的运动速度大小为5m/s
D.伤员的运动速度大小为10m/s
解析:选B.伤员在竖直方向的位移为h=H-l=5t(m),所以伤员的竖直分速度为v1=5m/s;由于竖直方向做匀速直线运动,所以伤员被拉到直升机内的时间为t=Hv1=505s=10s,故A错误,B正确;伤员在水平方向的分速度为v0=10m/s,所以伤员的速度为v=v21+v20=52+102m/s=55m/s,故C、D均错误.
第2节抛体运动
一、平抛运动
1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫平抛运动.
2.性质:平抛运动是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线.
二、平抛运动的规律
以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为y轴建立平面直角坐标系,则
1.水平方向:做匀速直线运动,速度:vx=v0,位移:x=v0t.
2.竖直方向:做自由落体运动,速度:vy=gt,位移:y=12gt2
3.合运动
(1)合速度:v=v2x+v2y=v20+gt2,方向与水平方向夹角为θ,则tanθ=vyv0=gtv0.
(2)合位移:s=x2+y2=v0t2+12gt22,方向与水平方向夹角为α,则tanα=yx=gt2v0.
三、斜抛运动
1.定义:将物体以一定的初速度沿斜向上或斜向下抛出,物体仅在重力的作用下所做的运动,叫做斜抛运动.
2.性质:加速度恒为g的匀变速曲线运动,轨迹是抛物线.
3.基本规律
以斜向上抛为例说明,如图所示.
(1)水平方向:v0x=v0cos_θ,F合x=0.
(2)竖直方向:v0y=v0sin_θ,F合y=mg.
因此斜抛运动可以看做是水平方向的匀速直线运动和竖直方向的竖直上(下)抛运动的合运动.
[自我诊断]
1.判断正误
(1)以一定的初速度水平抛出的物体的运动是平抛运动.(×)
(2)做平抛运动的物体的速度方向时刻在变化,加速度方向也时刻在变化.(×)
(3)做平抛运动的物体初速度越大,水平位移越大.(×)
(4)做平抛运动的物体,初速度越大,在空中飞行时间越长.(×)
(5)从同一高度平抛的物体,不计空气阻力时,在空中飞行的时间是相同的.(√)
(6)无论平抛运动还是斜抛运动,都是匀变速曲线运动.(√)
(7)做平抛运动的物体,在任意相等的时间内速度的变化是相同的.(√)
2.(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有()
A.两球的质量应相等
B.两球应同时落地
C.应改变装置的高度,多次实验
D.实验也能说明A球在水平方向上做匀速直线运动
解析:选BC.小锤打击弹性金属片后,A球做平抛运动,B球做自由落体运动.A球在竖直方向上的运动情况与B球相同,做自由落体运动,因此两球同时落地.实验时,需A、B两球从同一高度开始运动,对质量没有要求,但两球的初始高度及击打力度应该有变化,实验时要进行3~5次得出结论.本实验不能说明A球在水平方向上的运动性质,故选项B、C正确,选项A、D错误.
3.做平抛运动的物体,落地过程在水平方向通过的距离取决于()
A.物体的初始高度和所受重力
B.物体的初始高度和初速度
C.物体所受的重力和初速度
D.物体所受的重力、初始高度和初速度
解析:选B.水平方向通过的距离x=v0t,由h=12gt2得t=2hg,所以时间t由高度h决定;又x=v0t=v02hg,故x由初始高度h和初速度v0共同决定,B正确.
考点一平抛运动的基本规律
1.飞行时间:由t=2hg知,时间取决于下落高度h,与初速度v0无关.
2.水平射程:x=v0t=v02hg,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关.
3.落地速度:vt=v2x+v2y=v20+2gh,以α表示落地速度与x轴正方向的夹角,有tanα=vyvx=2ghv0,所以落地速度也只与初速度v0和下落高度h有关.
4.速度改变量:因为平抛运动的加速度为重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.
5.两个重要推论
(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.
(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tanα=2tanθ.
1.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()
A.3gR2B.33gR2
C.3gR2D.3gR3
解析:选B.画出小球在B点速度的分解矢量图,如图所示.由图可知,tan60°=v0gt,R(1+cos60°)=v0t,联立解得v0=33gR2,选项B正确.
2.(20xx浙江台州质检)从某高度水平抛出一小球,经过t时间到达地面时,速度方向与水平方向的夹角为θ,不计空气阻力,重力加速度为g,下列结论中正确的是()
A.小球初速度为gttanθ
B.若小球初速度增大,则平抛运动的时间变长
C.小球着地速度大小为gtsinθ
D.小球在t时间内的位移方向与水平方向的夹角为θ
解析:选C.如图所示,小球竖直方向的速度为vy=gt,则初速度为v0=gtcotθ,落地时速度v=gtsinθ,选项C正确,A错误;平抛运动的时间t=2yg,由高度决定,选项B错误;设位移方向与水平方向的夹角为α,则tanα=yx=gt2v0,tanθ=vyv0=gtv0,则tanθ=2tanα,选项D错误.
3.距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10m/s2.可求得h等于()
A.1.25mB.2.25m
C.3.75mD.4.75m
解析:选A.根据两球同时落地可得2Hg=dABv+2hg,代入数据得h=1.25m,选项A正确.
分解思想在平抛运动中的应用
(1)解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度也不用分解加速度.
(2)画出速度(或位移)分解图,通过几何知识建立合速度(或合位移)、分速度(或分位移)及其方向间的关系,通过速度(或位移)的矢量三角形求解未知量.
考点二类平抛运动
1.受力特点:物体所受合力为恒力,且与初速度的方向垂直.
2.运动特点:在初速度v0方向做匀速直线运动,在合力方向做初速度为零的匀加速直线运动,加速度a=F合m.
3.求解技巧
(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向列方程求解.
1.(多选)如图所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等.有三个完全相同的小球a、b、c,开始均静止于斜面同一高度处,其中小球b在两斜面之间,a、c分别在两斜面顶端.若同时释放a、b、c,小球到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,小球到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系正确的是()
A.t1>t3>t2B.t1=t1′、t2=t2′、t3=t3′
C.t1′>t3′>t2′D.t1<t1′、t2<t2′、t3<t3′
解析:选ABC.由静止释放三个小球时,对a:hsin30°=12gsin30°t21,则t21=8hg;对b:h=12gt22,则t22=2hg;对c:hsin45°=12gsin45°T23,则t23=4hg,所以t1>t3>t2.当水平抛出三个小球时,小球b做平抛运动,小球a、c在斜面内做类平抛运动.沿斜面方向的运动同第一种情况,所以t1=t1′,t2=t2′,t3=t3′,故A、B、C正确.
2.质量为m的飞机以水平初速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图所示,求:
(1)飞机受到的升力大小;
(2)上升至h高度时飞机的速度.
解析:(1)飞机做类平抛运动,则:
水平方向l=v0t
竖直方向h=12at2
解得a=2v20hl2
对飞机由牛顿第二定律得
F-mg=ma
解得F=mg+2v20hl2
(2)竖直方向v2y=2ah
v=v20+v2y
解得v=v0ll2+4h2
设速度方向与初速度v0方向的夹角为θ,则:
tanθ=vyv0
解得θ=arctan2hl
答案:(1)mg+2v20hl2
(2)v0ll2+4h2,方向与v0的夹角为arctan2hl
考点三多体平抛问题
1.多体平抛运动问题是指多个物体在同一竖直平面内平抛时所涉及的问题.
2.三类常见的多体平抛运动
(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.
(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.
(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.
1.如图所示,在距水平地面分别为H和4H的高度处,同时将质量相同的a、b两小球以相同的初速度v0水平抛出,则以下判断正确的是()
A.a、b两小球同时落地
B.两小球落地速度的方向相同
C.a、b两小球水平位移之比为1∶2
D.a、b两小球水平位移之比为1∶4
解析:选C.由H=12gt2a,4H=12gt2b可得tb=2ta,A错误;由x=v0t可知,xa∶xb=1∶2,C正确,D错误;设落地时速度与水平方向夹角为θ,则由tanθ=gtv0可知,tanθa∶tanθb=1∶2,θa≠θb,B错误.
2.(20xx山东潍坊模拟)如图所示,半圆形容器竖直放置,从其圆心O点处分别以水平初速度v1、v2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A点和B点,己知OA与OB互相垂直,且OA与竖直方向成θ角,则两小球的初速度之比为()
A.tanθB.tanθ
C.tan3θD.tan2θ
解析:选C.由平抛运动规律得,水平方向Rsinθ=v1t1,Rcosθ=v2t2,竖直方向Rcosθ=12gt21,Rsinθ=12gt22,联立解得v1v2=tan3θ,选项C正确.
(1)物体做平抛运动的时间由物体被抛出点的高度决定,而物体的水平位移由物体被抛出点的高度和物体的初速度共同决定.
(2)两条平抛运动轨迹的相交处是两物体的可能相遇处,两物体要在此处相遇,必须同时到达此处.
考点四斜面上的平抛运动
与斜面相关的平抛运动,其特点是做平抛运动的物体落在斜面上,包括两种情况:
1.物体从空中抛出垂直落在斜面上;
2.从斜面上抛出落在斜面上.
在解答这类问题时,除了要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.两种模型对比如下:
方法内容斜面总结
分解速度水平:vx=v0
竖直:vy=gt
合速度:
v=v2x+v2y
分解速度,构建速度三角形
分解位移水平:x=v0t
竖直:y=12gt2
合位移:s=x2+y2
分解位移,构建位移三角形
题组一顺着斜面的平抛运动
1.跳台滑雪运动员的动作惊险而优美,其实滑雪运动可抽象为物体在斜坡上的平抛运动.如图所示,设可视为质点的滑雪运动员从倾角为θ的斜坡顶端P处,以初速度v0水平飞出,运动员最后又落到斜坡上A点处,AP之间距离为L,在空中运动时间为t,改变初速度v0的大小,L和t都随之改变.关于L、t与v0的关系,下列说法中正确的是()
A.L与v0成正比B.L与v0成反比
C.t与v0成正比D.t与v20成正比
解析:选C.因运动员落在斜面上,故其位移与水平方向的夹角就等于斜面的倾角θ,因此有tanθ=yx,其中y=12gt2,x=v0t,则t=2v0tanθg,L=xcosθ=v0tcosθ=2v20tanθgcosθ,故t与v0成正比,L与v20成正比,C正确.
2.(20xx怀化模拟)如图所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一个高h=1.4m、宽L=1.2m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2m的A点沿水平方向跳起离开斜面(竖直方向的速度变为零).己知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10m/s2.(已知sin53°=0.8,cos53°=0.6)求:
(1)运动员在斜面上滑行的加速度的大小;
(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;
(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度.
解析:(1)设运动员连同滑板的质量为m,运动员在斜面滑行的过程中,由牛顿第二定律得
mgsin53°-μmgcos53°=ma
解得a=gsin53°-μgcos53°=7.4m/s2
(2)运动员从斜面上起跳后,沿竖直方向做自由落体运动,则H=12gt2
解得t=0.8s
(3)为了不触及障碍物,运动员以速度v沿水平方向起跳后竖直下落高度为H-h时,他沿水平方向运动的距离至少为Htan53°+L,设这段时间为t′,则
H-h=12gt′2
Htan53°+L≤vt′
解得v≥6.0m/s,所以最小速度vmin=6.0m/s.
答案:(1)7.4m/s2(2)0.8s(3)6.0m/s
题组二对着斜面的平抛运动
3.(20xx吉林模拟)(多选)如图所示,A、D分别是斜面的顶端、底端,B、C是斜面上的两个点,AB=BC=CD,E点在D点的正上方,与A等高.从E点以一定的水平速度抛出质量相等的两个小球,球1落在B点,球2落在C点,关于球1和球2从抛出到落在斜面上的运动过程()
A.球1和球2运动的时间之比为2∶1
B.球1和球2动能增加量之比为1∶2
C.球1和球2抛出时初速度之比为22∶1
D.球1和球2运动时的加速度之比为1∶2
解析:选BC.因为AC=2AB,所以AC的高度差是AB高度差的2倍,根据h=12gt2得t=2hg,解得运动的时间比为1∶2,故A错误;根据动能定理得mgh=ΔEk,知球1和球2动能增加量之比为1∶2,故B正确;BD在水平方向上的分量是DC在水平方向分量的2倍,结合x=v0t,解得初速度之比为22∶1,故C正确;平抛运动的加速度均为g,两球的加速度相同,故D错误.
4.(20xx温州质检)如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)()
A.v0tanθgB.2v0tanθg
C.v0cotθgD.2v0cotθg
解析:选D.如图所示,要小球到达斜面的位移最小,则要求落点与抛出点的连线与斜面垂直,所以有tanθ=xy,而x=v0t,y=12gt2,解得t=2v0cotθg.
(1)物体的竖直位移与水平位移之比是同一个常数,这个常数等于斜面倾角的正切值;
(2)当物体的速度方向与斜面平行时,物体离斜面最远.
考点五平抛运动中的临界问题
[典例]如图所示,水平屋顶高H=5m,墙高h=3.2m,墙到房子的距离L=3m,墙外马路宽x=10m,小球从房顶水平飞出,落在墙外的马路上,g=10m/s2.求:
(1)小球离开屋顶时的速度v0的大小范围;
(2)小球落在马路上的最小速度.
解析(1)设小球恰好落到马路的右侧边缘时,水平初速度为v01,则
L+x=v01t1
竖直位移H=12gt21
联立解得v01=(L+x)g2H=13m/s
设小球恰好越过围墙的边缘时,水平初速度为v02,则
水平位移L=v02t2
竖直位移H-h=12gt22
联立解得v02=5m/s
所以小球抛出时的速度大小范围为5m/s≤v0≤13m/s.
(2)小球落在马路上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在马路上时,落地速度最小.
竖直方向v2y=2gH
又有vmin=v202+v2y
解得vmin=55m/s
答案(1)5m/s≤v0≤13m/s(2)55m/s
(1)在体育运动中,像乒乓球、排球、网球等都有中间网及边界问题,要求球既能过网,又不出边界,某物理量(尤其是球速)往往要有一定的范围限制,在这类问题中,确定临界状态,画好临界轨迹,是解决问题的关键点.
(2)分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件.
1.(多选)如图所示,一高度为h的光滑水平面与一倾角为θ的斜面连接,一小球以速度v从平面的右端P点向右水平抛出,则小球在空中运动的时间t()
A.一定与v的大小有关
B.一定与v的大小无关
C.当v大于gh2cotθ时,t与v无关
D.当v小于gh2cotθ时,t与v有关
解析:选CD.球有可能落在斜面上,也有可能落在水平面上,可用临界法求解,如果小球恰好落在斜面与水平面的交点处,则满足hcotθ=vt,h=12gt2,联立可得v=gh2cotθ.故当v大于gh2cotθ时,小球落在水平面上,t=2hg,与v无关;当v小于gh2cotθ时,小球落在斜面上,x=vt,y=12gt2,yx=tanθ,联立可得t=2vtanθg,即与v有关,故选项C、D正确.
2.一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是()
A.L12g6h<v<L1g6h
B.L14gh<v<4L21+L22g6h
C.L12g6h<v<124L21+L22g6h
D.L14gh<v<124L21+L22g6h
解析:选D.设以速率v1发射乒乓球,经过时间t1刚好落到球网正中间.
则竖直方向上有3h-h=12gt21,①
水平方向上有L12=v1t1.②
由①②两式可得v1=L14gh.
设以速率v2发射乒乓球,经过时间t2刚好落到球网右侧台面的两角处,
在竖直方向有3h=12gt22,③
在水平方向有L222+L21=v2t2.④
由③④两式可得v2=124L21+L22g6h.
则v的最大取值范围为v1<v<v2,故选项D正确.
课时规范训练
[基础巩固题组]
1.物体做平抛运动时,下列描述物体的速度变化量大小Δv随时间t变化的图象中,可能正确的是()
解析:选D.平抛运动是匀变速曲线运动,加速度为定值,由a=ΔvΔt知,D正确.
2.游乐场内两支玩具枪在同一位置先后沿水平方向各射出一颗子弹,打在远处的同一个靶上,A为甲枪子弹留下的弹孔,B为乙枪子弹留下的弹孔,两弹孔在竖直方向上相距高度为h,如图所示,不计空气阻力.关于两枪射出子弹的初速度大小,下列判断正确的是()
A.甲枪射出的子弹初速度较大
B.乙枪射出的子弹初速度较大
C.甲、乙两枪射出的子弹初速度一样大
D.无法比较甲、乙两枪射出的子弹初速度的大小
解析:选A.由题图可以看出,子弹射出后到打到靶上的过程中,竖直方向的位移关系是hBhA,由h=12gt2得tB>tA,由v=xt可以得出vA>vB,A正确.
3.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()
A.速度和加速度的方向都在不断改变
B.速度与加速度方向之间的夹角一直减小
C.在相等的时间间隔内,速率的改变量相等
D.在相等的时间间隔内,动能的改变量相等
解析:选B.小球做平抛运动,加速度为重力加速度,小球的速度大小和方向时刻变化,小球的加速度大小和方向均恒定,故A错误.速度与加速度的夹角的正切值tanθ=v0vy=v0gt,随着时间t的增大,夹角θ减小,故B正确.速度改变量Δv=gΔt,相等时间内的速度改变量相等,但速率(即速度的大小)的改变量不相等,故C错误.相等时间内动能的改变量取决于合力——重力做的功,由于相等时间内下落的高度越来越大,重力做的功越来越多,故动能的改变量越来越大,故D错误.
4.如图所示,某同学将一枚飞镖从高于靶心的位置水平投向竖直悬挂的靶盘,结果飞镖打在靶心的正下方.忽略飞镖运动过程中所受空气阻力,在其他条件不变的情况下,为使飞镖命中靶心,他在下次投掷时可以()
A.换用质量稍大些的飞镖
B.适当增大投飞镖的高度
C.到稍远些的地方投飞镖
D.适当减小投飞镖的初速度
解析:选B.飞镖做的是平抛运动,飞镖打在靶心的正下方说明飞镖竖直方向的位移太大,根据平抛运动的规律可得,水平方向上x=v0t,竖直方向上h=12gt2,所以要想减小飞镖竖直方向的位移,在水平位移不变的情况下,可以适当增大投飞镖的初速度来减小飞镖的运动时间,故D错误;初速度不变时,时间不变,适当增大投飞镖的高度,可以使飞镖命中靶心,飞镖的质量不影响平抛运动的规律,故A错误,B正确;在稍远些地方投飞镖,则运动时间变长,下落的高度变大,不会击中靶心,故C错误.
5.(多选)如图所示,相同的乒乓球1、2恰好在等高处水平越过球网,不计乒乓球的旋转和空气阻力,乒乓球自最高点到落台的过程中,下列说法正确的是()
A.过网时球1的速度小于球2的速度
B.球1的飞行时间大于球2的飞行时间
C.球1的速度变化率等于球2的速度变化率
D.落台时,球1的重力功率等于球2的重力功率
解析:选CD.由h=12gt2知两球运动时间相等,B错误;由于球1水平位移大,故水平速度大,A错误;两球都做平抛运动,故加速度等大,即速度变化率相等,C正确;由v2y=2gh可知落台时两球竖直速度等大,又因为重力等大,故落台瞬时功率等大,D正确.
6.如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg.不计空气阻力(sin37°=0.6,cos37°=0.8;g取10m/s2).求:
(1)A点与O点的距离L;
(2)运动员离开O点时的速度大小;
(3)运动员从O点飞出开始到离斜坡距离最远所用的时间.
解析:(1)运动员在竖直方向做自由落体运动,
有Lsin37°=12gt2,
L=gt22sin37°=75m.
(2)设运动员离开O点时的速度为v0,运动员在水平方向的分运动为匀速直线运动,有Lcos37°=v0t,
即v0=Lcos37°t=20m/s.
(3)运动员的平抛运动可分解为沿斜面方向的匀加速运动(初速度为v0cos37°、加速度为gsin37°)和垂直斜面方向的类竖直上抛运动(初速度为v0sin37°、加速度为gcos37°).
当垂直斜面方向的速度减为零时,运动员离斜坡最远,
有v0sin37°=gcos37°t,解得t=1.5s
答案:(1)75m(2)20m/s(3)1.5s
[综合应用题组]
7.如图所示,从A点由静止释放一弹性小球,一段时间后与固定斜面上B点发生碰撞,碰后小球速度大小不变,方向变为水平方向,又经过相同的时间落于地面上C点,已知地面上D点位于B点正下方,B、D间的距离为h,则()
A.A、B两点间的距离为h2
B.A、B两点间的距离为h3
C.C、D两点间的距离为2h
D.C、D两点间的距离为233h
解析:选C.AB段小球自由下落,BC段小球做平抛运动,两段时间相同,所以A、B两点间距离与B、D两点间距离相等,均为h,故A、B错误;BC段平抛初速度v=2gh,持续的时间t=2hg,所以C、D两点间距离x=vt=2h,故C正确,D错误.
8.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落在了倾角为30°的斜面上的C点,小球B恰好垂直打到斜面上,则v1、v2之比为()
A.1∶1B.2∶1
C.3∶2D.2∶3
解析:选C.小球A、B从同一高度平抛,到斜面上的C点经历的时间相等,设为t,由题意可得tan30°=12gt2v1t,tan30°=v2gt,解得v1∶v2=3∶2,C正确.
9.如图所示,一个小球从一斜面顶端分别以v10、v20、v30水平抛出,分别落在斜面上1、2、3点,落到斜面时竖直分速度分别是v1y、v2y、v3y,则()
A.v1yv10>v2yv20>v3yv30B.v1yv10<v2yv20<v3yv30
C.v1yv10=v2yv20=v3yv30D.条件不足,无法比较
解析:选C.设小球落到斜面时速度方向与水平方向的夹角为α,由tanα=vyv0=gtv0=gt2v0t=2yx=2tanθ,
故v1yv10=v2yv20=v3yv30,C正确.
10.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,则()
A.P→Q所用的时间t=22lgsinθ
B.P→Q所用的时间t=2lg
C.初速度v0=bgsinθ2l
D.初速度v0=bg2l
解析:选C.物体的加速度为:a=gsinθ.根据l=12at2,得:t=2lgsinθ,故A、B错误;初速度v0=bt=bgsinθ2l,故C正确,D错误.
11.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是()
A.球的速度v等于Lg2H
B.球从击出至落地所用时间为2Hg
C.球从击球点至落地点的位移等于L
D.球从击球点至落地点的位移与球的质量有关
解析:选AB.由平抛运动规律知,在水平方向上有L=vt,在竖直方向上有H=12gt2,联立解得t=2Hg,v=Lt=Lg2H,A、B正确;球从击球点至落地点的位移为x=H2+L2,与球的质量无关,C、D错误.
12.如图所示,倾角为37°的粗糙斜面的底端有一质量m=1kg的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25.现小滑块以某一初速度v从斜面底端上滑,同时在斜面底端正上方有一小球以v0水平抛出,经过0.4s,小
球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中.(已知sin37°=0.6,cos37°=0.8),g取10m/s2.求:
(1)小球水平抛出的速度v0;
(2)小滑块的初速度v.
解析:(1)设小球落入凹槽时竖直速度为vy,则
vy=gt=10×0.4m/s=4m/s
v0=vytan37°=3m/s.
(2)小球落入凹槽时的水平位移x=v0t=3×0.4m=1.2m
则滑块的位移为s=1.2cos37°m=1.5m
滑块上滑时,mgsin37°+μmgcos37°=ma
解得a=8m/s2
根据公式s=vt-12at2
解得:v=5.35m/s.
答案:(1)3m/s(2)5.35m/s
第3节圆周运动
一、描述圆周运动的物理量
1.线速度:描述物体圆周运动快慢.
v=ΔsΔt=2πrT.
2.角速度:描述物体转动快慢.
ω=ΔθΔt=2πT.
3.周期和频率:描述物体转动快慢.
T=2πrv,T=1f.
4.向心加速度:描述线速度方向变化快慢的物理量.
an=rω2=v2r=ωv=4π2T2r.
二、向心力
1.作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.
2.大小:F=mv2r=mω2r=m4π2rT2=mωv=4π2mf2r
3.方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.
4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.
三、圆周运动、向心运动和离心运动
1.匀速圆周运动与非匀速圆周运动
两种运动具体比较见下表:
项目匀速圆周运动非匀速圆周运动
定义线速度的大小不变的圆周运动线速度的大小不断变化的圆周运动
运动特点F向、a向、v均大小不变,方向变化,ω不变F向、a向、v大小和方向均发生变化,ω发生变化
向心力F向=F合由F合沿半径方向的分力提供
2.离心运动
(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.
(2)受力特点(如图所示)
①当F=mrω2时,物体做匀速圆周运动;
②当F=0时,物体沿切线方向飞出;
③当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.
④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.
[自我诊断]
1.判断正误
(1)匀速圆周运动是匀变速曲线运动.(×)
(2)物体做匀速圆周运动时,其角速度是不变的.(√)
(3)物体做匀速圆周运动时,其合外力是不变的.(×)
(4)匀速圆周运动的向心加速度与半径成反比.(×)
(5)匀速圆周运动的向心力是产生向心加速度的原因.(√)
(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度.(√)
(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出.(×)
(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.(×)
2.(多选)某质点绕圆轨道做匀速圆周运动,下列说法中正确的是()
A.因为该质点速度大小始终不变,所以它做的是匀速运动
B.该质点速度大小不变,但方向时刻改变,是变速运动
C.该质点速度大小不变,因而加速度为零,处于平衡状态
D.该质点做的是变速运动,具有加速度,故它所受合力不等于零
解析:选BD.匀速圆周运动的速度大小不变,但方向时刻改变,所以不是匀速运动,A错误,B正确;由于速度的方向改变,所以速度是变化的,一定存在加速度,不是处于平衡状态,合力不等于零,C错误,D正确.
3.(多选)一质点做匀速圆周运动,其线速度大小为4m/s,转动周期为2s,则()
A.角速度为0.5rad/s
B.转速为0.5r/s
C.轨迹半径为4πm
D.加速度大小为4πm/s2
解析:选BCD.角速度为ω=2πT=πrad/s,A错误;转速为n=ω2π=0.5r/s,B正确;半径r=vω=4πm,C正确;向心加速度大小为a=v2r=4πm/s2,D正确.
4.有一个惊险的杂技节目叫“飞车走壁”,杂技演员骑摩托车先在如图所示的大型圆筒底部做速度较小,半径较小的圆周运动,通过逐步加速,圆周运动的半径逐步增大,最后能以较大的速度在竖直筒壁上做匀速圆周运动,这时使车和人整体做匀速圆周运动的向心力是()
A.圆筒壁对车的静摩擦力
B.筒壁对车的弹力
C.摩托车本身的动力
D.重力和摩擦力的合力
解析:选B.在竖直筒壁上的摩托车只受三个力作用,其中竖直方向上重力与摩擦力是一对平衡力,水平方向上筒壁对车的弹力提供了车和人整体做匀速圆周运动的向心力,B正确.
考点一圆周运动的运动学问题
1.圆周运动各物理量间的关系
2.对公式v=ωr和a=v2r=ω2r的理解
(1)由v=ωr知,r一定时,v与ω成正比;ω一定时,v与r成正比;v一定时,ω与r成反比.
(2)由a=v2r=ω2r知,在v一定时,a与r成反比;在ω一定时,a与r成正比.
1.(20xx广州调研)如图所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点()
A.角速度之比ωA∶ωB=2∶1
B.角速度之比ωA∶ωB=1∶2
C.线速度之比vA∶vB=2∶1
D.线速度之比vA∶vB=1∶2
解析:选D.板上A、B两点的角速度相等,角速度之比ωA∶ωB=1∶1,选项A、B错误;线速度v=ωr,线速度之比vA∶vB=1∶2,选项C错误,D正确.
2.(多选)如图所示为一链条传动装置的示意图.已知主动轮是逆时针转动的,转速为n,主动轮和从动轮的齿数比为k,以下说法中正确的是()
A.从动轮是顺时针转动的
B.主动轮和从动轮边缘的线速度大小相等
C.从动轮的转速为nk
D.从动轮的转速为nk
解析:选BC.主动轮逆时针转动,带动从动轮也逆时针转动,用链条传动,两轮边缘线速度大小相等,A错误,B正确;由r主:r从=k,2πnr主=2πn从r从可得n从=nk,C正确,D错误.
3.(20xx桂林模拟)如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()
A.线速度大小之比为3∶2∶2
B.角速度之比为3∶3∶2
C.转速之比为2∶3∶2
D.向心加速度大小之比为9∶6∶4
解析:选D.A、B轮摩擦传动,故va=vb,ωaRA=ωbRB,ωa∶ωb=3∶2;B、C同轴,故ωb=ωc,vbRB=vcRC,vb∶vc=3∶2,因此va∶vb∶vc=3∶3∶2,ωa∶ωb∶ωc=3∶2∶2,故A、B错误.转速之比等于角速度之比,故C错误.由a=ωv得:aa∶ab∶ac=9∶6∶4,D正确.
常见的三种传动方式及特点
(1)皮带传动:如图1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB.
(2)摩擦传动:如图2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.
(3)同轴传动:如图2乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.
考点二圆周运动的动力学问题
1.向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
2.向心力的确定
(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.
(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.
3.解决动力学问题要注意三个方面的分析
(1)几何关系的分析,目的是确定圆周运动的圆心、半径等.
(2)运动分析,目的是表示出物体做圆周运动所需要的向心力.
(3)受力分析,目的是利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.
1.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看做是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()
A.gRhLB.gRhd
C.gRLhD.gRdh
解析:选B.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F向=mgtanθ.根据牛顿第二定律:F向=mv2R,tanθ=hd,解得汽车转弯时的车速v=gRhd,B对.
2.(20xx江西九校联考)(多选)如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔(小孔光滑)的水平桌面上,小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图中P′位置),两次金属块Q都静止在桌面上的同一点,则后一种情况与原来相比较,下面的判断中正确的是()
A.细线所受的拉力变小
B.小球P运动的角速度变大
C.Q受到桌面的静摩擦力变大
D.Q受到桌面的支持力变大
解析:选BC.金属块Q在桌面上保持静止,根据平衡条件知,Q受到桌面的支持力等于其重力,保持不变,故D错误.设细线与竖直方向的夹角为θ,细线的拉力大小为FT,细线的长度为L,P球做匀速圆周运动时,由重力和细线拉力的合力提供向心力,如图,则有FT=mgcosθ,Fn=mgtanθ=mω2Lsinθ,得角速度ω=gLcosθ,使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cosθ减小,则得到细线拉力FT增大,角速度增大,A错误、B正确.对Q,由平衡条件知,Q受到桌面的静摩擦力变大,故C正确.
文章来源:http://m.jab88.com/j/72038.html
更多