88教案网

每个老师需要在上课前弄好自己的教案课件,大家在细心筹备教案课件中。我们制定教案课件工作计划,才能在以后有序的工作!哪些范文是适合教案课件?下面是小编为大家整理的“代数证明”,大家不妨来参考。希望您能喜欢!

第二十三讲代数证明

代数证明主要是指证明代数中的一些相等关系或不等关系.
在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明.
恒等式的证明常用的方法有:
(1)由繁到简,从一边推向另一边;
(2)从左右两边人手,相向推进;
(3)作差或作商证明,即证明:左边一右边=0,.
条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通.
代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用.
例题求解
【例1】(1)求证:
(2)求证:.
思路点拨(1)从较复杂的等式左边推向等式右边,注意左边每个分式分子与分母的联系;(2)等式两边都较复杂,对左、右两边都作变形或作差比较.
注如果一个等式的字母在条件允许范围内的任意一个值,使得等式总能成立,那么这个等式叫做恒等式.把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形,形变值不变是恒等变形的特点.
代数式的化简求值、代数证明其实质都是作恒等变形,分解、换元、引参、配方、分组、拆分,取倒数等是恒等变形常用的技巧与方法.
【例2】已知,且.
求证:.
(黄冈市竞赛题)
思路点拨从完全平方公式入手,推出x、y与a、b间关系,寻找证题的突破口.
【例3】有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用和,分别表示第i(I=1,2,3…18)支球队在整个赛程中胜与负的局数.
求证:.
(天津市竞赛题)
思路点拨作差比较,明确比赛规则下隐含的条件是证题的关键.
【例4】已知,且.
求证:.
思路点拨条件中有一个连等式,恰当引入参数,把待证式两边都变形为与参数相同的同一个代数式.
【例5】已知,证明:四个数、、、中至少有一个不小于6.
(北京市竞赛题)
思路点拨整体考虑,只需证明它们的和大于等于24即可.
注证明条件等式的关键是恰当地使用条件,常见的方法有:
(1)将已知条件直接代入求证式;
(2)变换已知条件,再代入求证式;
(3)综合变形巳知条件,凑出求证式;
(4)根据求证式的需求,变换已知条件,凑出结果等.
不等关系证明类似于等式的证明,在证明过程中常用如下知识:
(1)若A—B0,则AB;
(2)若A—B0,则AB;
(3);
(4)(x0);
(5)若,则中至少有一个大于.
学力训练
1.已知,,r=,求证:.
2.已知,.求证:.
3.已知:,求证:.
4.设的小数部分为,求证:.
5.设x、y、z为有理数,且(y—z)2+(x-y)2+(z—x)2=(y+z-2x)2+(z+x-2y)2+(x+y—2z)2,求证:.
(重庆市竞赛题)
6.已知,求证:a:b:c=1:2:3.
7.已知,求证:x、y、z中至少有一个为1.
8.若,记,证明:A是一个整数.(匈牙利竞赛题)
9.已知,求证:.
10.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p倍,乙单独做所需时间为甲、丙两人合做所需时间的q倍;丙单独做所需时间为甲、乙两人合做所需时间的x倍,求证:.
(天津市竞赛题)
11.设a、b、c均为正数,且,证明:.
12.如果正数a、b、c满足,求证:.
(北京市竞赛题)
13.设a、b、c都是实数,考虑如下3个命题:
①若,且c1,则0b2;
②若c1且0b2,则;
③若0b2,且0,则c1.
试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.(武汉市选拔赛试题)m.JaB88.coM

扩展阅读

证明


4.2证明(3)
【教学目标】
1、继续学习证明的方法和表述
2、通过探求,让学生归纳和掌握证明的两种思考方法。
【教学重点、难点】
重点:本节教学重点是如何分析证明的途径.
难点:难点是例6的证明,要用逆向思维的思考方法.
【教学过程】
教师活动教学内容学生活动
一、引例显示引例在RtΔABC中,∠ACB=Rt∠,CD⊥AB于D。
和老师一起读题,并要求能根据题意准确画图。

二、回顾图形中,有几个锐角4个回答问题
提问:通过观察,图形中这4个锐角大小有什么关系?两两分别相等学生思考,然后个别提问
提出问题,提问学生时帮助总结证明方法。问题:求证:∠ACD=∠A
证明:∵∠ACB=Rt∠
∴∠ACD+∠BCD=90°
∵CD⊥AB
∴∠A+∠ACD=90°
∴∠BCD=∠A(其它证法亦可)同学们思考,然后让一学生归纳方法。
板书:课题§4.2证明(3)
三、新课讲解
例51、指导学生,理解题意已知:如图,AD是ΔABC的高,E是AD上一点,若AD=BD,DE=DC,求证:∠1=∠C

审题,认真思考并且积极回答老师的提问
2、思考:证明两个角相等的方法有哪些?证明两个角的方法较多,如两条直线平行,同位角相等或内错角相等,在本题总结的过程中帮助学生引导∠1和∠C在两个三角形有什么特点。学生讨论,然后提问总结。
三、新课讲解
例53、教师帮助总结通过证明∠1与∠C所在的三角形全等通过提问学生总结方法
4、问:如何证明?在全等的证明过程中,已知两条件:AD=BD,DE=DC
通过AD是ΔABC的高,可证出∠ADC=∠BDE=Rt∠学生找已知条件和需证条件
5、给出解题步骤证明:∵AD是ΔABC的高
∴∠BDE=∠ADC=Rt∠
又∵BD=AD(已知)
DE=DC(已知)
∴ΔBDE≌ΔADC(SAS)
∴∠1=∠C(全等三角形的对应角相等)学生口述证题过程
四、课堂练习一学生完成练习一后,出示参考证明核对(略)已知:如图,在ΔABC中,D,E分别是AB,AC上的点,∠1=∠2,求证:∠B=∠ADE一学生在黑板上演示,其他学生在课本上完成练习。
五、新课讲解
例6显示例6(屏幕显示)
问:证明两直线平行的方法有哪些?
已知:AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A与点D重合,求证:EF∥BC审题后思考:证明两直线平行主要有哪些方法。
2、通过学生的回答,总结两直线平行的方法平行的证法较多,有时无从着手,但联系本题,需引导学生从结论出发进行思考。分组讨论,前面组回答,后面组补充总结
3、问,若在多条交流的河流下游发现河水被污染,该怎么找到污染源?总结出一条可行的方法——逆流而上寻找污染源。发挥学生的发散思维,让学生充分思考,尽情发挥。
4、联想本题,发生类比,从结论出发总结证明思路。
联系本题,让学生总结出逆流而上寻找证题思路。
5、出示证明过程证明:因为将纸片沿直线EF折叠后,点A与点D重合,所以EF是线段AD的对称轴。
∴EF⊥AD(对称轴垂直平分连结两个对称点之间的线段)
∵AD是ΔABC的高(已知)
∴BC⊥AD(三角形的高的定义)
∴EF∥AD(垂直于同一条直线的两直线平行)通过总结,完成证题
6、提出问题,让学生课外思考完成后上交。问:审题从结论出发,还有其它的解法让学生解一题多种,学生可以互相讨论。
六、课堂练习2出示(屏幕显示)已知:如图,AD∥BC,∠B=∠D,求证,ΔADC≌CBA
请写出分析和证明过程
学生仔细审题
要求学生用逆向思维的思考方式写出分析过程
学生独立完成,互相讨论,总结方法。
七、课堂小结问:这节我们学到了什么?1、会正确表述证明的过程
2、会判断如何证明角、边相等,两直线平行
3、学会用证明的两种思考方法,特别要体验逆向思维的必要性学生自由回答
八、作业布置1、完成课本“作业题”
2、预习下一节记录

证明(2)


教案课件是老师不可缺少的课件,大家应该要写教案课件了。在写好了教案课件计划后,这样接下来工作才会更上一层楼!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“证明(2)”希望对您的工作和生活有所帮助。

§1.1、你能证明它们吗(二)

一、教学目标:

1、进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。

3、能够用综合法证明等腰三角形的判定定理。

4、了解反证法的推理方法。

5、会运用“等角对等边”解决实际应用问题及相关证明问题。

二、教学重点:正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,通过学习,掌握证明的基本步骤和书写格式。

教学难点:等腰三角形的定理应用及由特殊结论归纳出一般结论。

三、教学方法:探究式教学法自主探究与合作探究

四、教学过程:

复习回顾:

你知道等腰三角形具有怎样的性质吗?、

探索——发现——猜想——证明

1、引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的性质呢?

(提出问题,激发学生探究的欲望。学生猜想)

2、探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗?

(学生动手画图、探索发现相等的线段并思考为什么相等)

A

C

B

D

E

3、证明:

(1)例1证明:等腰三角形两底角的平分线相等。

(引导学生分清条件和结论、画图、写出已知、求证。)

已知:如图,在△ABC中,AB=AC,BD,CE是

△ABC的角平分线。

求证:BD=CE(一生口述证明过程,然后写出证明过程。)

证明:(略)

此题还有其它的证法吗?

(2)你能证明等腰三角形两条腰上的中线相等吗?高呢?

(引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完成。)

4、议一议1:

在上图的等腰△ABC中,如果∠ABD=1/3∠ABC,∠ACE=1/3∠ACB,那么BD=CE吗?如果∠ABD=1/4∠ABC,∠ACE=1/4∠ACB呢?由此你能得到一个什么结论?

(根据图形引导学生分析归纳得出一般结论。学生分组思考、交流,在充分讨论的基础上得出一般结论写出证明过程。)

(3)如果AD=1/2AC,AE=1/2AB,那么BD=CE吗?如果AD=1/3AC,AE=1/3AB,呢?由此你能得到一个什么结论?

议一议2:

把“等边对等角”反过来还成立吗?你能证明?

定理证明

已知:在ΔABC中∠B=∠C

A

B

C

求证:AB=AC(引导学生证明定理)

A

B

C

D

方法如下:

(1)

A

B

C

D

(2)

课堂小结1:

(1)归纳判定等腰三角形判定有几种方法,

(2)A

B

C

D

EE

证明两条线段相等的方法有哪几种。(讨论、交流)

随堂练习:

已知:在ΔABC中,AB=AC,D在AB上,DE∥AC

求证:DB=DE

(引导学生分析证明方法,学生动手证明,写出证明过程。)

想一想:

A

C

B

小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?

证明P8

反证法的概念P8

课堂小结2:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

五、作业:

1、基础作业:P9页习题1.21、2、3。

2、拓展作业:《目标检测》

3、预习作业:P10-12页做一做

六、板书设计:

§1.1、你能证明它们吗(二)

探索——发现——猜想——证明

七、课后记:

折纸与证明


为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“折纸与证明”但愿对您的学习工作带来帮助。

第一章数学活动:折纸与证明
一、学习目标:
1.充分给学生思考、探索折叠等边三角形、特殊四边形等的方法,并在折叠的基础上证明所折叠的图形满足条件.
2.培养学生动脑思考、动手操作及合作探究的能力.
二、学习重点与难点
重点:探索折叠等边三角形、特殊四边形等的方法.
难点:证明所折叠的图形是要求的等边三角形、特殊四边形等。
三、操作与思考:
活动一:请参阅课本34~35活动1、2:
应让学生充分活动,可让学生参照课本35页提供了的做法,也可让学生找出尽可能多的其它方法,重点在说明所折叠的图形符合要求

活动二:请参阅《数学综合与实践活动》P2活动2:
(1)让学生了解折出三角形高线的方法;
(2)进一步让学生了解折叠中位线的方法;
(3)可利用上面的方法证明三角形的中位线定理以及直角三角形的一些性质。

活动三:请参阅《数学综合与实践活动》P3活动3:
(1)点O是矩形的对称中心,两个图形全等,面积也相等。
(2)方法一:可以把余下的图形看成两个矩形拼成的,只要分别找出这两个矩形的中心相连即可;
方法二:可将剪掉的矩形补回,分别找出原矩形和剪掉的矩形的中心相连即可。

四、巩固反馈
课本35页数学活动3,证明较复杂,可灵活选用,让有兴趣的同学课后探索。

六、总结提升:
总结你本节课的收获或感受:

文章来源:http://m.jab88.com/j/62886.html

更多

最新更新

更多