88教案网

相似三角形的判定1

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“相似三角形的判定1”,希望能为您提供更多的参考。

相似三角形的判定(一)
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合

教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’

三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。

四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.

五、作业
整理课上定理证明.

六、板书设计:

扩展阅读

相似三角形的判定(3)导学案


教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“相似三角形的判定(3)导学案”,欢迎阅读,希望您能阅读并收藏。

课题:27.2.1相似三角形的判定3
学习目标:
1.掌握“两角对应相等,两个三角形相似”的判定方法.
2.能够运用三角形相似的条件解决简单的问题.
学习重点:三角形相似的判定方法4——“两角对应相等,两个三角形相似”.
学习难点:三角形相似的判定方法4的运用.
教具:三角板
学法指导:自主完成一、认真阅读教材小组合作交流完成二、三、四、五
学习过程备注
一、复习导学:
1、我们已学习过哪些判定三角形相似的方法?

2、如图,△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由.

二、探究新知:
问题1:观察两副三角板其中同样度数的两个三角尺相似吗?说说理由。

问题2:作△ABC和△A/B/C/使得∠A=∠A/,∠B=∠B/,这时它们的第三个角满足∠C=∠C/吗?分别度量这两个三角形的边长,计算△ABC和△A/B/C/的对应边的比是否相等?

小结:三角形相似的判定方法4:
的两个三角形相似.
几何语言:
证明:

三、巩固提升
如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为D.求AD的长.
解:

由三角形相似的条件可知,如果两个直角三角形满足_______或_____,那么这两个直角三角形相似.
四、思考探究:
对于两个直角三角形,我们还可以用“HL”判定它们全等。那么,满足斜边的比等于一组直角边的比的两个直角三角形相似吗?

已知:如图,Rt△ABC与Rt△A/B/C/中,∠C=∠C/=90°,
AB:A/B/=AC:A/C/.求证:Rt△ABC∽Rt△A/B/C/

结论:_________________________________________________

五、能力提升:
1、已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.

2、已知:如图,△ABC的高AD、BE交于点F.求证:.

相似三角形的判定导学稿


教案课件是老师上课中很重要的一个课件,大家应该要写教案课件了。只有制定教案课件工作计划,新的工作才会如鱼得水!你们会写适合教案课件的范文吗?小编特地为您收集整理“相似三角形的判定导学稿”,仅供您在工作和学习中参考。

九年级数学下册导学稿

课题27.2.1相似三角形的判定

审核人级部审核讲学时间第12周第1导学稿

教师寄语辛勤就有收获,细心、认真努力就会获得喜悦。

学习目标1、培养学生的观察能力,感受两个三角形相似的判定方法1

与全等三角形判定方法(SSS)的区别与联系,体验事物间特殊与一般的关系。

教学重点两个三角形相似的判定方法1

教学难点探究判定方法1的过程

教学方法探究自学法

学生自主活动材料

一、前置自学(自学课本。40-42页内容,并完成下列问题)

1.如图272-1,在ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E,ADE与ABC有什么关系?

延伸问题:

改变点D在AB上的位置,先让学生猜想ADE与ABC仍相似,然后再用几何画板演示验证。

二、合作探究

1、(教材P42页探究2)

任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。

如图27.2-4,在△ABC和△A′B′C′中,,求证△ABC∽△A′B′C′

2、如图,在大小为4×4的正方形网格中,是相似三角形的是()

①②③④

A.①和②B.②和③C.①和③D.②和④

.

3、如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是()

(A)②③④(B)③④⑤(C)④⑤⑥(D)②③⑥

4、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A1B1C1,使ΔA1B1C1与格点三角形ABC相似(相似比不为1).

三、拓展提升

1.如图4-32,△ABC与△A′B′C′相似吗?为什么?

2、一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,写出所有不同的截法?

四、当堂反馈

1、如图,AB∥EF∥CD,图中共有对相似三角形,写出来并说明理由;

2、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)

3.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.

4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()

自我评价专栏(分优良中差四个等级)

自主学习:合作与交流:书写:综合:

《相似三角形判定定理的证明》教案


每个老师不可缺少的课件是教案课件,大家在仔细规划教案课件。认真做好教案课件的工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编为大家收集的“《相似三角形判定定理的证明》教案”仅供您在工作和学习中参考。

《相似三角形判定定理的证明》教案

课题

相似三角形判定定理的证明

课时

1

课型

新授

学习目标的表述:

1.通过自主学习探索、合作交流,会表述相似三角形判定定理证明的思路和方法。

2.通过合作探究和练习,会综合应用相似三角形判定定理以及性质解决相关问题。

设置的依据:

1.《课程标准》的要求

了解相似三角形判定定理的证明过程

2.教材分析

本节课内容是九年级第四章第五节,学生对三角形之间的全等关系已有深度的认识。而本章相似三角形是全等三角形的拓展和延伸,是学生在初中阶段对三角形关系的收官之章。学生在学习了“平行线分线段成比例”、“相似三角形的定义”、“探索相似三角形的条件”等知识的基础上进行的,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸。本节作为选学内容,目标要求学生对相似三角形的判定定理作为了解,但为了让学有余力的学生得到不同的发展,对于这一选学内容的指导,重视证明思路探索和寻求。所以本节的重点是证明思路探索以及相似性质和判定的综合应用。

3.学情分析

本课时的教学内容是相似三角形的判定定理证明。而在这之前,学生已对“平行线分线段成比例”这个基本事实熟练掌握,充分了解相似三角形的概念。因此为即将学习相似三角形判定定理的证明打下基础。可能会出现的问题有1、证明的思路和方法不清晰2、添加平行线的意图和作用不明确。

评价任务的设计:

1.通过自主学习和目标检测一的探索和交流,会表述相似三角形判定定理证明的思路和方法。(目标1)

2.通过合作交流与目标检测二,会利用相似三角形性质判定定理进行简单的计算或证明。(目标2)

设计意图:

本节课的重点是了解三角形判定定理的证明,能熟练应用判定定理解决相关问题。难点是认识证明中的转化思想,能综合应用相似三角形的判定定理以及性质。在学习中注重学生合作能力,想象能力,化归能力的合理评价,对能主动参与合作交流、积极操作、勇于发言、善于创新的行为给予及时的评价和鼓励。

教学设计

学习

目标

学习活动

评价标准

教师活动

目标达成情况

反思与

评价

目标1:.经历探索相似三角形判定定理(1)的证明过程,通过自主学习(预习课本)及合作交流,能在教师的引导下表述自己的思路和方法,并完成相似三角形判定定理(2)(3)的证明。能说出证明中的转化思想。

旧知链接

1、相似三角形的定义?

2、平行线分线段成比例定理及推论?

3、相似三角形相似的判定定理有哪些?

会准确说出定义、定理的文字语言及几何语言

结合课件的图形学生回答问题,同时,让学生上讲台上写出定理的几何语言。

教师认真倾听并对回答及时评价和补充,同时对回答问题的学生鼓励和表扬。

自主学习

1.)阅读课本99页定理1,教师提示文字证明题的步骤,学生说出定理的条件和结论,思考定理的证明思路和方法。

引导学生思考问题:1.在没给出判定定理的情况下,怎么证明相似?(相似三角形的定义)2.现有条件下,依据相似三角形的定义,还需要得到什么条件?(对应边成比例)3.添加什么样的辅助线可以得到线段的比例式?(平行线)4.怎么做平行?(在大三角形内部或外部构造与小三角形全等的三角形。)

2).定理的证明思路?

3).同伴帮助下,写出定理的证明过程。

会写出定理的条件和结论

会说出证明的思路和方法

教师组织同桌2人相互协作完成定理的已知求证及图形。同时教师巡视点拨学困生。鼓励学生大胆思考问题,对他们及时给予表扬同时表扬优等生带动学困生的合作精神。

展示2组学生的成果,教师指出问题并及时矫正。对优秀小组给予表扬。教师点拨解题关键:做平行线找比例式。

目标检测一(学生活动1)

1.8人小组合作:

证明:定理2两边成比例且夹角相等的两个三角形相似。

(教师提示:1.证明相似的方法除定义外,又多了什么方法?该选择哪个?2.参照定理1的证明,完成的定理2证明

)小组长组织交出一份成果。

2.4人小组合作,独立完成证明过程。

证明:定理3三边成比例的两个三角形相似。

(教师提示:1.证明相似的方法除定义外,又多了什么方法?该选择哪个?)。

学生小组交流,能拿出较为完善的成果

学生小组交流,大部分能拿出较为完善的成果

教师巡视各小组并适时给予点拨,并帮助完善。对交流中思考积极的学生进行表扬,展示部分小组的成果。对优秀小组的组长及成员大力表扬。教师点拨解题关键:做平行线找比例式。

教师参与各小组的活动并适时给予点拨,并帮助完善。学生做完教师批改组长的,组长批改组员的。教师点拨解题关键:做平行线找比例式。

目标2:通过活动2,能综合应用相似三角形判定定理以及性质解决相关问题。

《相似三角形判定定理的证明》基于标准的教学设计合作交流(学生活动2)

(4人小组合作交流)

1.已知:如图,在ABC中,D是AC上一点,∠CBD的平分线交AC于点E,且AE=AB

求证:AE2=AD·AC.

(1)要证明结论中的等积式,一般将等积式转化成比例式。

(2)要证明比例式往往从(平行线分线段成比例)和(相似三角形对应边成比例入手)。

(3)结合几何图形我们从后者入手,结合比例式找相似三角形?

(4)发现找不到怎么办?(将条件中的等线段进行代换)

《相似三角形判定定理的证明》基于标准的教学设计

《相似三角形判定定理的证明》基于标准的教学设计

教师设置问题梯度分解证明思路:

(1)从已知条件中我们能得到那些结论?

(2)根据结论我们选择哪个定理进行证明?

(3)具体的步骤有哪些?

每小组组长说出证明思路,组员展示证明过程。7成达标。

独立完成证明过程。小组长负责批改组员。并帮助学困生完善证明过程。

学生合作交流时教师积极观察各小组的交流,主动参与个别组的讨论并及时指导。教师巡视各小组并适时给予点拨,并帮助完善。对交流中思考积极的学生进行表扬,展示部分小组的成果。对优秀小组的组长及成员大力表扬。

学生展示这四个问题时要抓住这几个问题的关键点。

教师点拨关键点:1.等积式转化成比例式2.比例式中的等线段代换3.“三点定形”确定相似三角形

教师观注学困生,点拨学困生,帮助完善。教师批改小组长的作业,对优秀小组的组长及成员表扬。

《相似三角形判定定理的证明》基于标准的教学设计目标检测二

学生独立完成

已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.

(1)求证:ADQQCP.(2)AQ与PQ的位置关系如何?说明理由。

教师小结后,学生识记(一线三等角)的模型,明确这种模型常在证明全等或相似中出现。

8成学生能独立完成推理的大部分。同桌相互批改。

学生思考1分钟后,教师再提示:证明两个三角形相似时,一般的顺序是先找角相等用判定定理1,再次找夹等角的两边的比例式用判定定理2,最后三边成比例用判定定理3

教师指定学生演板,订正不足。教师巡视点拨学困生,寻找闪光点,对表现优秀者进行表扬。

教师小结:强调图形的模型(一线三等角)

小结

通过本节课的学习你有什么收获?

从知识、技能、思想方法、数学模型等几方面进行总结。

作业

《相似三角形判定定理的证明》基于标准的教学设计作业布置:

课本102页1小题。1.如图,在等边三角形ABC中,D,E,F分别是三边上的点,AE=BF=CD,那么ABC与DEF相似吗?请证明你的结论.

这部分作业要所有学生都能认真的完成。

作业/拓展

《相似三角形判定定理的证明》基于标准的教学设计课本102页问题解决4.如图,在ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s.如果P,Q两动点同时运动,那么何时PBQ与ABC相似?

文章来源:http://m.jab88.com/j/70394.html

更多

最新更新

更多