88教案网

反比例函数的图象、性质和应用

做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《反比例函数的图象、性质和应用》,希望对您的工作和生活有所帮助。

反比例函数及其图像性质
教材分析
(1)知识结构
(2)重点、难点分析
本节的重点是结合图象,总结出反比例函数的性质.学习了前面三个基本函数后,学生有了一些识图的能力,并掌握了基本的研究方法.学生在经历了一个画图的过程后,可以通过观察、分析、与同学的相互讨论、交流中,逐步形成对反比例函数的全面认识.可以培养学生运用数形结合的数学思想方法,也是一个数学地发现问题解决问题的过程.本节的另一个重点是用待定系数法求反比例函数的解析式,这种方法在求四种基本函数解析式中都已经用到,本节课通过巩固练习,可进一步提高对待定系数法的认识.例如学生可以观察出有几个待定系数,就需要几对自变量与函数的对应值,即几个方程.
本节的难点是描点、画图,由于学生知识的限制,描点、画图不能对图形有一个全面的把握.这样,学生在描点画图时就会感到困难,无法估计出这个图象到底是什么样子,感到无从下手.因此,从解析式中可以进行初步的分析,认识到反比例函数的图象分成两支,以便初步认识其图象的大致变化趋势.
教法建议
数学教育的目的之一是帮助学生认识数学,数学与现实世界有着密切的联系,而且数学的发展是一个充满着观察、实验、归纳、类比和猜测的探索过程,因此,学生在获得知识的同时,也应该养成尊重客观事实的态度,勇于探索的精神以及独立思考与人合作交流的习惯.具体安排如下:
(1)从实例中抽象出数学模型
小学学习过反比例关系的知识,现在的物理、化学等学科中也有许多反比比例的实例.学生可以从比较简单的实例中,抽象出这类函数的特点,形成反比例函数的概念.
(2)画出图象,研究反比例函数的性质
可以创设数学情境,引导学生找出数与形的关系.如:k0时,x与y同号,图象在一、三象限,k0时,x、y异号,图象在二、四象限.类似的结论,可以在画图前,先组织学生猜测,并说明根据,画图后,再进行补充.让学生体验数学知识的形成过程.
(3)牢固掌握待定系数法
进一步熟悉待定系数法解题的一般步骤,并通过不断地运用,逐渐发现有几个待定系数,就应列出几个相应的方程.这样反比例函数只需一对自变量与函数的对应值就可确定其解析式.
教学目标
1、使学生能从简单的实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并能结合图象总结出反比例函数的性质,渗透数形结合的数学思想;.
3、会用待定系数法求反比例函数的解析式;
4、通过揭示正比例函数与反比例函数的联系与转化,渗透辩证唯物主义的思想;
5、通过观察、归纳、总结反比例函数的性质,培养学生勇于探索的科学精神;
6、培养学生数学地发现问题,并利用数学知识解决问题的能力.
教学重点:
反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.
教学难点:
画反比例函数的图像,因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.

教学过程:
一、新课引入:
看下面的实例:(出示幻灯)
1.小红家到学校的路程有5公里,写出她上学所用的时间t与速度v的函数关系式;
2.有一个矩形面积是3平方米,写出它的长a与宽b之间的函数关系式;
3.十一放七天假,老师布置要记忆36个单词.设小明完成的天数为n,每天的单词量为m,写出m与n的函数关系式?
答:从函数的观点看,在运动变化的过程中,这两个变量可以分别看成自变量与函数,写成:(),(),()
二、新课讲解:
1、让学生观察这几个函数的特点,然后得出反比例函数的概念:(板书)
一般地,函数(k是常数,)叫做反比例函数.
注意:自变量的指数是-1,而不是1.
例1、判断以下哪个式子中的x、y表示反比例函数关系?
⑴⑵⑶
例2、写出下列函数的解析式,并判断他们是不是反比例函数,如果是,求出他们的定义域.
⑴一个圆柱形钢材的体积是800cm3,写出它的底面积和高的函数关系.⑵压强大小是由单位面积所受到的压力决定的,那么当物体受到的垂直压力为100牛时,写出压强与受力面积的函数关系.
2、根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?
答:图像和性质.
通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后
学生要研究其他函数,也可以按照这种方式来研究.
下面,我们就来看一个例题:(出示幻灯)
例3、在平面直角坐标系中画出反比例函数与的图像.
提问:⑴画函数图像的关键问题是什么?
答:合理、正确地选值列表.
⑵在选值时,你认为要注意什么问题?
答:Ⅰ、由于函数图像的特点还不清楚,多选几个点较好;
Ⅱ、不能选,因为时函数无意义;
Ⅲ、选整数较好计算和描点.
这个问题中最核心的一点是关于的问题,提醒学生注意.
⑶你能不能自己完成这道题呢?
解:列表
x-6-5-4-3123456
-1-1.2-1.5-26321.51.21
11.21.52-6-3-2-1.5-1.21
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结.
注意:(1)一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线;
(2)这两条曲线不相交;
(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.
关于注意(3)可问学生:为什么图像与x和y轴不相交?
通过这个问题既可加深学生对反比例函数图像的记忆又可培养学生思维的灵活性和深刻性.
3、再让学生观察黑板上的双曲线图,提问、归纳、总结出反比例函数的性质:
(1)当时,双曲线的两个分支各在哪个象限内?在每个象限内,y随x的增大怎样变化?
(2)当时,双曲线的两个分支各在哪个象限内?在每个象限内,y随x的增大怎样变化?
这两个问题由学生讨论总结之后回答,教师板书:
(1)当时,双曲线的两分支位于一、三象限,y随x的增大而减少;
从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
(2)当时,双曲线的两分支位于二、四象限,y随x的增大而增大.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
注意:同样可以推出函数的图象的性质.
4、反比例函数的这一性质与正比例函数的性质有何异同?
通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.
5、反比例函数的简单练习:
上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:
例4、选择题:
1、在同一坐标系内,函数与的图象的交点个数为().
(A)0个(B)1个(C)2个(D)4个
2、若反比例函数的图象在它所在的象限内,y随x的增大而增大,则m的值是()
(A)-2.(B)2.(C)±2.(D)以上结果都不对.
三、课堂小结:教师提问,学生思考回答:
1.什么是反比例函数?
2.反比例函数的图像是什么样的?
3.反比例函数的性质是什么?
4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.
四、布置作业P80练习1,2
五、板书设计
反比例函数及其图像
引例:(1)例1:例2:例3:
例4:
1.反比例函数的图象:
2.反比例函数的性质

六、补充材料:
马尔克广场上的游戏
在世界著名的水都威尼司斯,有个马尔克广场.广场的一端有一座宽82米的雄伟教堂.教堂的前面是一方开阔地.这片开阔地经常吸引着四方游人到这里做一种奇特的游戏:把眼睛蒙上,然后从广场的一端向另一端教堂走去,看谁能到达教堂的正前面!
奇怪的是,尽管这段距离只有175米,但却没有一名游客能幸运地做到这一点!全都如下图那般,走成了弧线,或左或右,偏斜到了一边!
类似的情形也有很多,这与俗话说的鬼打墙类似.有许多人在沙漠或雪地里,由于迷失方向而在原地打圈子,这一切近乎玩笑般的遭遇,终于引起了科学家的注意.
公元1896年,挪威生理学家古德贝对闭眼打转的问题进行深入的探讨.他搜集了大量的事例后分析说:这一切都是由于人自身两条腿在作怪!长年累月养成的习惯,使每个人一只脚伸出的步子长一段微不足道的距离.而正是这一段很小的步差x,导致了这个人走出一个半径为y的大圈子!
现在我们将这个过程数学化,研究一下x与y之间的函数关系.
假定某个两脚踏线间相隔为d.很显然,当人在打圈子时,两只脚实际上走出了两个半径相差为d的同心圆.设该人平均步长为1.那么,一方面这个人外脚比内脚多走路程
另一方面,这段路程又等于这个人走一圈的步数与步差的乘积,
即:
对一般的人,米,米,代入得(单位米)
这就是所求的迷路人打圈子的半径公式.是我们学过的反比例函数(图象如下图).今设迷路人两脚步差为毫米,仅此微小的差异,就足以使他在大约三公里的范围内绕圈子!
让我们回到那个马克尔广场的游戏上来.我们先计算一下,当人们闭起眼睛,从广场一端中央的M点,要想抵达教堂CD,最小的弧线半径应该是多少?
如图,注意到矩形ABCD边BC=175(米),(米).上述问题可以转化成几何中的命题:已知与.求的半径的大小.
这就说,游人要想成功,他所走弧线半径必须不小于394米.我们再来计算一下,要达到上述要求,游人的两脚步差需要什么限制.
这表明游人的两只脚步差必须小于毫米,否则就难以成功.然而在闭眼的情况下两脚这么小的步差一般人是达不到的,这就是在游戏中为什么没有人能够蒙上眼睛走到教堂前面的道理。

相关阅读

反比例函数的图象与性质


一般给学生们上课之前,老师就早早地准备好了教案课件,大家在用心的考虑自己的教案课件。只有写好教案课件计划,才能促进我们的工作进一步发展!你们会写教案课件的范文吗?急您所急,小编为朋友们了收集和编辑了“反比例函数的图象与性质”,但愿对您的学习工作带来帮助。

备课教学案

课题九年级第五章第二节

反比例函数的图象与性质I

课型新授课课时1授课时间

教学目标

知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重点

教学难点1)重点:画反比例函数图象并认识图象的特点.

2)难点:画反比例函数图象.

教学关键教师画图中要规范,为学生树立一个可以学习的模板

教学方法激发诱导,探索交流,讲练结合三位一体的教学方式

教学手段教师画图,学生模仿

教具三角板,小黑板

学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法

教学过程

(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

内容设计意图

一:课前检测:

1.什么叫做反比例函数;

(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数。)

2.反比例函数的定义中需要注意什么?

(1)k为常数,k≠0

(2)从y=中可知x作为分母,所以x不能为零.

二:激发兴趣导入新课

问题1:对于一次函数y=kx+b(k0)的图象与性质,我们是如何研究的?

y=kx+by=kx

K0b0一、二、三一、三

b0一、三、四

K0b0一、二、四二、四

b0二、三、四

问题2:对于反比例函数y=k/x(k是常数,k0),我们能否象一次函数那样进行研究呢?

可以

问题3:画图象的步骤有哪些呢?

(1)列表

(2)描点

(3)连线

(教学片断:

师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

生:我知道反比例函数的解析式为且k不等于0

生:我知道反比例函数的图象是曲线。

师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

生:该研究反比例函数图象和性质了。

师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

三:探求新知

学生思考、交流、回答。

提问:你能画出的图象吗?

学生动手画图,相互观摩。

(1)列表(取值的特殊与有效性)

x-8-4-2-1-1/21/21248

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

议一议

(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

(4)曲线的发展趋势如何?

曲线无限接近坐标轴但不与坐标轴相交

学生先分四人小组进行讨论,而后小组汇报

做一做

作反比例函数的图象。

学生动手画图,相互观摩。

想一想

观察和的图象,它们有什么相同点和不同点?

学生小组讨论,弄清上述两个图象的异同点

相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

四:归纳与概括

反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。

(1)当k0时,两支曲线分别位于第___、___象限,

(2)当k0时,两支曲线分别位于第___、___象限.

五:课堂练习

(1)

(2)反比例函数的图象是________,过点(,____),其图象分布在___象限;

六:形成性检测

(1)已知函数的图象分布在第二、四象限内,则的取值范围是_________

(2)若ab<0,则函数与在同一坐标系内的图象大致可能是下图中的()

(A)(B)(C)(D)

(3)画和的图象

七:反馈拓展

在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

八:作业布置

(1)作反比例函数y=2/x,y=4/x,y=6/x的图象

(2)习题5.2.1

(3)预习下一节反比例函数的图象与性质II

复习上节主要内容

(3分钟)

(5分钟)

运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

(12分钟)

引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.

在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

注:(1)x取绝对值相等符号相反的数值

(2)x取值要尽可能多,而且有代表性

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

(3分钟)

此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

(5分钟)

活动效果及注意事项学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是“光滑的曲线”

(4分钟)

培养学生归纳,语言表达能力

此中注意分类讨论思想的应用

巩固反比例函数图象性质

(2分钟)

与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

(5分钟)

这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

(4分钟)

此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

(1分钟)

巩固作反比例函数图象的步骤,预习下一节课内容

教学反思与检讨:

本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

反比例函数的图象与性质

一:画出的图象

(1)列表(取值的特殊与有效性)

x-8-4-2-1-1/21/21248

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

注:(1)x取绝对值相等符号相反的数值

(2)x取值要尽可能多,而且有代表性三:练习

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

二:反比例函数的图象y=是由两支曲线组成的。

(1)当k0时,两支曲线分别位于第一、三象限,

(2)当k0时,两支曲线分别位于第二、四象限.

《反比例函数的图象和性质》表格式教案


教学目标

知识技能

进一步探究反比例函数的图象和性质

数学思考

培养学生由特殊到一般的思想方法

培养学生由现象看本质,总结归纳的思想方法

解决问题

通过反比例函数的图象和性质来解决现实生活中的实际问题

情感态度

培养学生的深入探索精神

重点

反比例函数图象和性质

难点

反比例函数图象和性质

教学流程安排

活动流程图

活动内容和目的

[活动1]反比例函数的图象与对称性.

[活动2]反比例函数关于的对称性.

[活动3]的大小与反比例函数图像的位置关系.

[活动4]布置作业.

体会当反比例函数的系数护卫相反数时,函数图象之间的对称关系.

体会反比例函数图象自身的对称性.

体会k的大小对反比例函数图象的位置关系.

通过练习加深理解.

课前准备

教具

学具

补充材料

三角板(直尺)、投影仪、实物投影仪.

三角板(直尺),铅笔.

教学过程设计

问题与情境

师生行为

设计意图

[活动1]反比例函数的图象与对称性.

例1:画出下列反比例函数的图象,并观察函数图象间的关系.

(1).

(2).

性质1:反比例函数与的图象关于轴对称,也关于轴对称.

同学们已经学习过两个图形关于某条直线成轴对称,现在观察两个反比例函数图象关于某条直线是否对称?为什么?用心体会反比例函数图象与系数k的关系.

[活动2]反比例函数关于的对称性.

例2:画出下列函数的图象并回答问题.

(1)

在函数的图象上任取一点P,写出P关于的对称点Q,那么点Q在函数的图象上吗?

(2)

在函数的图象上任取一点P,写出P关于的对称点Q,那么点Q在函数的图象上吗?

结论1:反比例函数和的图象关于直线对称.

例3:画出下列函数的图象并回答问题:

(1)

在函数的图象上任取一点P,写出P关于的对称点Q,那么点Q在函数的图象上吗?

(2)

在函数的图象上任取一点P,写出P关于的对称点Q,那么点Q在函数的图象上吗?

结论2:反比例函数和的图象关于直线对称.

性质2:反比例函数的图象关于直线对称.

一个反比例函数图象是否是轴对称图形?对称轴是什么?

[活动3]的大小与反比例函数图像的位置关系.

例4:在同一直角坐标系内,画出时反比例函数的图象,并观察函数的图象有什么规律?

性质3:随着的增大,反比例函数的图象的位置相对于坐标原点越来越远.

体会k的大小对反比例函数图象的位置关系.

[活动4]作业:试证明反比例函数的图象是轴对称图形.

教师布置作业,

学生课后完成.

首先思考本节课所学内容,进行及时复习巩固.

然后通过独立思考练习,达到对知识的深入理解.

最后进行归纳总结,并进行自我评价学习效果.

《反比例函数的图象和性质》表格式教案2


教学任务分析

教学目标

知识技能

掌握反比例函数的图象的作法.

掌握反比例函数的性质.

数学思考

通过反比例函数图象画法的全过程,体会无限趋近的思想.

完整全面的画出反函数的图象,锻炼缜密、严谨的数学思考能力.

解决问题

通过深入理解反比例函数的两个变量之间的关系来解决现实生活中的实际问题.

情感态度

互相探讨,逐步完善思考的合作精神.

重点

反比例函数的图象和性质

难点

反比例函数的图象和性质

教学流程安排

活动流程图

活动内容和目的

活动1复习反比例函数的定义、函数图象的画法.

活动2讨论反比例函数图象的画法.

活动3结合反比例函数的图象探究反比例函数的性质.

活动4结合练习,体会反比例函数图象和性质.

活动5布置作业.

在头脑中形成一般情况下函数图象的画法,加深反比例函数的概念,进一步提出问题:如何画出反比例函数的图象?

通过列表、描点、连线这三个基本步骤画出函数的图象,让学生体会反比例函数图象的画法过程中应该注意的问题.

引导学生通过观察反比例函数的图象,总结归纳出反比例函数的性质.

通过练习,加深对反比例函数的图象和性质的理解.

课前准备

教具

学具

补充材料

三角板(直尺)、投影仪、实物投影仪

铅笔,橡皮,三角板(直尺),练习本

教学过程设计

问题与情境

师生行为

设计意图

[活动1]复习反比例函数的定义、函数图象的画法.

我们已经学习了反比例函数的定义,为了进一步了解反比例函数的性质,按照前面介绍的方法,我们可以从研究反比例函数的图象入手,为此我们首先要复习函数图象的画法.

老师提问:

学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24的矩形饲养场.设它的一边长为,求另一边的长与的函数关系.

讨论与思考:是的什么函数?自变量取值范围是什么?

试画出函数的图象?

老师带领学生复习画函数图象的步骤及注意事项.

可能出现的情况:

1.列表时函数值求错.

2.图象只画出在第一象限的部分.

3.图象画成曲线.

通过实际问题引出事例,复习反比例函数的概念.

复习列表、描点、连线的基本步骤.

通过画这个函数图象,让学生体会出三个基本步骤应该注意的地方:

1.取多少个点?

2.在什么范围内取点.

3.如何连线?

[活动2]讨论反比例函数图象的画法.

例1:画出下列函数的图象

(1)

(2)

重点强调反比例函数图象的画法.

根据引入部分内容的探讨,进一步理解如何正确画出函数图象.

[活动3]结合反比例函数的图象探究反比例函数的性质.

老师提问:

按照前面我们学习函数图象的基本思路,首先考虑问题:

我们所画的上面的反比例函数的图象的形状以及函数图象的位置.

性质1:反比例函数的图象由两条曲线组成,叫双曲线.

性质2:时,函数图象在第一、三象限;时,函数图象在第二、四象限.

[注]:双曲线的两个分支都不会与x轴、y轴相交.

老师提问:对于反比例函数,随着的增大,一定减小吗?

引导同学们观察图象,在图象上取特殊值进行讨论.

性质3:时,在一、三象限,随的增大而减小;时,在二、四象限,随的增大而增大.

[注]:函数的增减性是指在同一象限内;反比例函数的图象的位置和函数的增减性都由比例系数k的符号决定.

[活动4]结合练习,体会反比例函数的图象和性质.

1.试画出函数的图象,并求出当时,的取值范围?

注:不能只回答,体会图象的一支在第一象限,向右无限接近x轴

2.试回答:对于函数,当自变量时,函数值是否一定有?

注:要分类讨论,体会函数的增减性是指在同一象限内.

第一个问题:注意让学生观察函数的图象,回答要完整,体会函数图象的性质.

第二个问题:引导学生学会用分类讨论的思想来解决问题;注意深入理解函数图象的性质.

[活动5]作业:书P547,8

教师布置作业,

学生课后完成.

首先思考本节课所学内容,进行及时复习巩固.

然后通过独立思考练习,达到对知识的深入理解.

最后进行归纳总结,并进行自我评价学习效果.

文章来源:http://m.jab88.com/j/70387.html

更多

最新更新

更多