每个老师需要在上课前弄好自己的教案课件,规划教案课件的时刻悄悄来临了。只有制定教案课件工作计划,未来的工作就会做得更好!你们了解多少教案课件范文呢?小编特地为您收集整理“七年级数学下册《平行线的判定》教案2”,相信能对大家有所帮助。
七年级数学下册《平行线的判定》教案2
4.4平行线的判定(2)
教学目标:
1.进一步掌握推理、证明的基本格式,掌握平行线判定方法的推理过程.
2.学习简单的推理论证说理的方法.
3.通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力.
教学重点:平行线判定方法2和判定方法3的推理过程及几何解题的基本格式
教学难点:判定定理的形成过程中逻辑推理及书写格式.
教学过程:
一、问题情境
1.叙述平行线的判定方法1
2.结合图形用数学语言叙述平行线的判定方法1.
3.我们学习平行线的性质定理时,有几条定理?那么两条直线平行的判定方法除了判定方法1外,是否还有其他的方法呢?
二、新课学习
1.如下图,两条直线a,b被第三条直线c所截,有一对内错角相等,即:∠1=∠2,那么a与b平行吗?
分析后,学生填写依据.
解:因为∠1=∠2(已知)
∠1=∠3(对顶角相等)
所以∠2=∠3(等量代换)
所以a∥b(同位角相等,两直线平行)
2.如下图,两条直线a,b被第三条直线c所截,有一对同旁内角互补,即:∠1+∠2=180°,那么a与b平行吗?
分析后,学生填写依据.
解:因为∠1+∠2=180°(已知)
∠1+∠3=180°(邻补角的概念)
所以∠2=∠3(等式的性质)
所以a∥b(同位角相等,两直线平行)
3.归纳平行线的判定方法2和判定方法3
平行线的判定方法2两直线被第三条直线所截,有一对内错角相等,那么这两条直线平行.
平行线的判定方法3两直线被第三条直线所截,有一对同旁内角互补,那么这两条直线平行.
4.归纳所学的三条判定方法的简单表述形式:
同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.
5.P92做一做
用两个相同的三角形,可以拼成一个四边形,拼成的四边形的对边互相平行吗?
6.例题示范:P93的例题3,例题4.
三、实效训练:
1.教材P94练习1,2小题.
2.如图,直线MN通过A点且平行于BC,求∠BAC+∠B+∠C的度数.
2.如图,AB∥CD,求∠A+∠E+∠C的度数.(提示:过点E作EF∥AB
四、小结与反思:
平行线的性质定理有哪些?平行线的判定定理有哪些,它们有什么区别?
五、课后作业
课本P95习题4.45,7,8题.
七年级数学下册《平行线的判定》教案1
4.4平行线的判定(1)
教学目标:
1.了解推理、证明的基本格式,掌握平行线判定方法的推理过程.
2.学习简单的推理论证说理的方法.
3.通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力.
教学重点:平行线判定方法1的推理过程及几何解题的基本格式
教学难点:判定定理的形成过程中逻辑推理及书写格式.
教学过程:
一、问题情境
1.叙述平行线的性质定理1-3,借助图形用数学语言表达.
2.我们知道了“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?这就是我们今天所要学习的内容.
二、新课学习
1.阅读P90教材的观察,学生动手量一量,再回答提出的问题.
2.探究
“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?
如下图1,两条直线AB、CD被第三条直线EF所截,有一对同位角相等,即
∠END=∠EMB,那么AB与CD平行吗?
图1图2
过N作直线m平行于AB,则∠ENG=∠EMB,由于∠END=∠EMB,因此,∠ENG=∠END,从而直线m与CD重合,因此CD∥AB.
判定方法1两直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行.
简记:同位角相等,两直线平行
3.用划平行线的方法说明同位角相等,两直线平行
图3
4.例题示范:P91的例1,例2
三、实效训练:
1:我们知道平行线有传递性,也可以通过平行线的判定方法1说明它的道理.
如图,已知三直线a,b,c,如果a∥b,b∥c,那么a∥c.
请你在下面的括号里填上理由:
∵a∥b,b∥c,()
∴∠1=∠2,∠2=∠3()
∴∠1=∠3.()
∴a∥c()
2.如图,已知AM∥CN,∠1=∠2,在下面的括号内填上理由:
∵AM∥CN()
∴∠EAM=∠ECN()
又∵∠1=∠2()
∴∠EAM+∠1=∠ECN+∠2()
即∠EAB=∠ECD
∴AB∥CD()
3.如图,已知∠1=∠2,说明为什么∠4=∠5.
四、小结与反思:
今天讲的内容是平行线的判定方法,而上节课学习的是平行线的性质定理,它们的条件和结论正好相反,也可以说是互逆的命题.注意它们各自的使用方法,不要用反了这两条定理.
五、课后作业
课本P94习题4.41、2、4题.
七年级数学下册《平行线及其判定》教学设计
【学习目标】
1、掌握由角得平行线判定的三种方法;
2、能运用所学过的平行线的判定方法,进行简单的推理和计算。
【自学指导】
一、由角判定线平行:
如图1所示,为我们利用直尺和三角板画平行线的过程简图,
1、探究1:由三角尺前后的移动位置知,∠1和∠2是同位角,且相等,则画出两条平行线。
归纳1:两条直线被第三条直线所截,如果同位角,那么这两条直线;
简单地说:同位角,两直线;
几何语言:∠1=∠2(已知)
∴ABCD(____________________________)
【小试牛刀】
1、如图∠1=∠2,
∴_______________()。
∠2=∠3,
∴_______________()。
2、探究2:若∠1=∠3,能否推出ABCD吗?
理由如下:∠1=∠3(已知),∠2=∠3()
∴∠1=∠2()
∴ABCD()
归纳2:两条直线被第三条直线所截,如果内错角,那么这两条直线;
简单地说:内错角,两直线;
几何语言:∠1=∠3(已知)
∴ABCD(____________________________)
3、探究3:若∠1+∠4=180°,能得出ABCD吗?
归纳3:两条直线被第三条直线所截,如果同旁内角,那么这两条直线;
简单地说:同旁内角,两直线;
几何语言:∠1+∠4=180°(已知)
∴ABCD(___________________________)
【知识运用】
完成推理,写出依据
1、如图∠1=∠2,
∴_______________()。
∠3=∠4,
∴_______________()。
2、如图:A=3∴()2=E∴()+=180°∴
3、已知:如图,∠1=∠2,且BD平分∠ABC.求证:ABCD
平行线的判定当堂检测
1、如图,由下列条件可判定哪两条直线平行,并说明根据.
(1)∠1=∠2,可得__________,理由是_________________________.
(2)∠A=∠3,可得__________,理由是_________________________.
(3)∠ABC+∠C=180°,可得________,理由是________________________.
2、已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BECF.
文章来源:http://m.jab88.com/j/6466.html
更多