88教案网

相似三角形解题思路赏析导学案

一般给学生们上课之前,老师就早早地准备好了教案课件,大家都在十分严谨的想教案课件。只有规划好教案课件计划,新的工作才会更顺利!你们清楚有哪些教案课件范文呢?小编收集并整理了“相似三角形解题思路赏析导学案”,供大家借鉴和使用,希望大家分享!

相似三角形解题思路赏析(3.29)
姓名_______评价
内容解读:人们在对两个物体或图形的形状和大小进行认识时,全等和相似的感知是伴生的.在数学上全等和相似是特殊与一般、共性与个性的关系,形状相同是二者的共性.全等形是相似比等于1时的相似形;同时我们应学会应用两个三角形相似的判定方法去解决问题。
例题讲解:
1、如图,在Rt△ABC内有边长分别为的三个正方形,则满足的关系式是()
A、B、
C、D、

2、已知矩形的边长.某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:(1)经过多少时间,的面积等于矩形面积的?
(2)是否存在时刻,使以为顶点的三角形与
相似?若存在,求的值;若不存在,请说明理由.

3、如图1,在中,,于点,点是边上一点,连接交于,交边于点.
(1)求证:;
(2)当为边中点,时,如图2,求的值;
(3)当为边中点,时,请直接写出的值.

4、已知为线段上的动点,点在射线上,且满足(如图1所示).
(1)当,且点与点重合时(如图2所示),求线段的长;
(2)在图1中,联结.当,且点在线段上时,设点之间的距离为,,其中表示的面积,表示的面积,求关于的函数解析式,并写出函数定义域。
5、已知:将一副三角板(Rt△ABC和Rt△DEF)如图①摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.(1)当α=30°时(如图②),求证:AG=DH;
(2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.

相似三角形解题思路赏析2(4.06)
班级姓名_______学号______评价
学习目标:理解相似三角形的的概念,掌握判断两个三角形相似的常见方法,能利用相似三角形的性质解决有关问题。
在利用相似三角形的性质解题时注意下面几点常见的转化方法与解题的思路:1、比例式的转化,利用不同的相似三角形所得到的比例式相互替代(或比例式中的相等的线段的替换),实现比例式的变更从而产生新的比例式.2、利用比例式来求出线段之间的函数关系,用方程来求解.3、应当根据求解的问题的形式,灵活把所得到比例式进行加减乘除运算,实现问题的转化.4、在图形中注意添加辅助线的方法构造相似三角形或相似三角形的对应量.
例题讲解:
1、将一张边长分别为a,b的矩形纸片ABCD折叠,使点C与点A重合,则折痕的长为()
(A)(B)
(C)(D)

2、如图,梯形ABCD的两条对角线与两底所围成的两个三角形的面积分别为、,则梯形的面积为().
A.B.C.D.

3、已知:如图,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=CD,连结CE,求证:(1)CE=CA;(2)上述条件下,若AF⊥CE于点F,且AF平分∠DAE,CD︰AE=3︰8,求的值;

4、如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q.
(1)四边形OABC的形状是,
当时,的值是;
(2)①如图2,当四边形的顶点落在轴正半轴时,求的值;
②如图3,当四边形的顶点落在直线上时,求的面积.

5、如图,在中,,,,分别是的中点.点从点出发沿折线以每秒7个单位长的速度匀速运动;点从点出发沿方向以每秒4个单位长的速度匀速运动,过点作射线,交折线于点.点同时出发,当点绕行一周回到点时停止运动,点也随之停止.设点运动的时间是秒().
(1)两点间的距离是;
(2)射线能否把四边形分成面积相等的两部分?若能,
求出的值.若不能,说明理由;
(3)当点运动到折线上,且点又恰好落在射线上时,求的值;
(4)连结,当时,请直接写出的值.
相似三角形解题思路赏析3(4.12)
班级姓名_______学号______评价
学习目标:理解相似三角形的的概念,掌握判断两个三角形相似的常见方法,能利用相似三角形的性质解决有关问题。
在探索三角形是否相似时,我可以参照学习全等的方法(全等是相似的一种特殊情况):1、寻找:缺什么找什么,例如已经知道有两边对应成比例,证明其夹角相等,则必定是证第三边也成比例;已知一组角相等,要证明夹这个角的两边成比例,则必定是再找一组角相等;等等.2、构造:对于在题目中不能直截找到相似三角形的问题,我们还可以通过作辅助线的方法构造相似三角形,实现线段或角的转化将问题解决.当然这种情况要有一定的想象力与比较扎实的基础.3、学会灵活转化:角的替换、比例式的替换、相等线段的替换,可以让我们更快捷地寻找证明相似的条件.
相似三角形的基本性质有:1、相似三角形的对应角相等,2、相似三角形的对应边成比例,3、相似三角形的对应线段(对应边上的中线、对应边上的高、对应角的角平分线以及周长)的比等于相似比,4、相似三角形的面积比等于相似比的平方.其实在第二、三条性中的对应角与对应线段还可以推广对应量相等或成比例,例如:两个相似三角形的对应边上的高与中线的夹角是相等的,对应边上的高分对边所成的对应线段成比例等等.说开了也就是相似三角形对应线段分原三角所成的对应小三角形相似.
例1、小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:
(1)如图1,正方形中,作交于,交于,求证:;
(2)如图2,正方形中,点分别在上,点分别在上,且,求的值;

(3)如图3,矩形中,,,点分别在上,且,求的值.

例2、如图,△ABC和△A1B1C1均为正三角形,BC和B1C1的中点均为D.求证:AA1⊥CC1.

例3、如图,在△ABC中,AB=4,D在AB边上移动(不与A、B重合),DE∥BC交AC于E点,连接CD,设S△ABC=S,S△DEC=S1.
(1)当D为AB中点时,求S1:S的值;
(2)设AD=x,S1:S=y,求y关于x的函数关系式及自变量x的取值范围;
(3)是否存在点D,使得S1>1/4S成立?若存在,求出D点的位置;若不存在,说明理由.
例4、如图,四边形ABCD中,E、F分别是AB、CD的中点.P是对角线AC延长线上的任意一点,PF交AD于点M,PE交BC于点N,FE交MN于点K,求证:K是线段MN的中点.

例5、如图,正方形EFGH内接于△ABC中,AD⊥BC,设BC=a,AD=h,
说明:正方形的边长=,请利用上述的有关结论,解决下面问题:
在一块锐角三角形余料上,加工成正方形零件,使正方形的四个顶点都在三角形的边上,若三角形的三边长为a,b,c,且a>b>c,问:正方形的两个顶点放在哪条边上可使加工出来的正方形零件的面积最大?

相似三角形解题思路赏析(4.19)
班级姓名_______学号______评价
1、如图,∥∥,直线AB分别与,,交于点A、B、C,直线DE分别与,,交于点D、E、F,AB=3,BC=4,DE=2,试探索求EF长的方法.
2、善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个
问题,你能帮助解决吗?
问题一平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,
AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似?

(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______________(填“相似”或“不相似”或“相似性无法确定”.不要求证明).
问题二平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______________(填“相似”或“不相似”或“相似性无法确定”.不要求证明).
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由.

(3)一般结论:对于任意梯形(如图③),一定(填“存在”或“不存在”)
平行于梯形底边的直线PQ,使截得的两个小梯形相似.
若存在,则确定这条平行线位置的条件是=
(不妨设AD=a,BC=b,AB=c,CD=d.不要求证明).

3、解决下面问题:
(1)、阅读理解:
如图1,以原点O为位似中心按比例尺OA’:OA=3:1在位似中心的同侧将△OAB放大为△OA’B’,若A(1,2),B(3,1),则A’、B’两点的坐标分别为(3,6)和(9,3);
(2)、活动探索:(在下图中分别作出对应的图形,不要求用尺轨作图)
活动一:如图2,以点T(1,1)为位似中心按比例尺TE’:TE=3:1在位似中心的同侧将△TEF放大为△TE’F’,若E(2,3),F(4,2),则E’、F’的坐标分别为_____________、_____________;
活动二:如图3,以点W(2,3)为位似中心按比例尺WG’:WG=4:1在位似中心的同侧将△WGH放大为△WG’H’,若G(3,5),H(5,4),则G’、H’的坐标分别为_____________、_____________;
(3)、归纳猜想:
以第一象限内的点M(a,b)为位似中心,按比例尺MP’:MP=n:1在位似中心的同侧将图形放大,则点P(x,y)的对应点P’的横坐标为_____________,纵坐标为__________(用a、b、n、x、y表示)

4、在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P’在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转600,得到△ADE,这个旋转相似变换记为A(,);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(,900),得到△ADE,则线段BD的长为cm;
(2)如图3,分别以锐角△ABC的三边AB、BC、CA为边向外作正方形ADEB,BFGC,CHIA,点O1、O2、O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系.

相似三角形与图形的证明(4.26)
班级姓名_______学号______评价
1、如图①,为等边三角形,面积为.分别是三边上的点,且,连结,可得.
(1)用S表示的面积=,的面积=;
(2)当分别是等边三边上的点,且时,如图②,求的面积和的面积;
(3)按照上述思路探索下去,当分别是等边三边上的点,且时(为正整数),的面积=,
的面积=.

2、如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.
(1)在前3秒内,求△OPQ的面积与t的函数关系式;
(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;
(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.
3、如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB,
(1)求证:EF∥BD;(2)若AB=7,CD=3,求线段EF的长;

4、请阅读下列材料:
问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结.若,探究与的位置关系及的值.
小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.

请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段与的位置关系及的值;
(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
(3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).

相关推荐

相似三角形的判定(3)导学案


教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“相似三角形的判定(3)导学案”,欢迎阅读,希望您能阅读并收藏。

课题:27.2.1相似三角形的判定3
学习目标:
1.掌握“两角对应相等,两个三角形相似”的判定方法.
2.能够运用三角形相似的条件解决简单的问题.
学习重点:三角形相似的判定方法4——“两角对应相等,两个三角形相似”.
学习难点:三角形相似的判定方法4的运用.
教具:三角板
学法指导:自主完成一、认真阅读教材小组合作交流完成二、三、四、五
学习过程备注
一、复习导学:
1、我们已学习过哪些判定三角形相似的方法?

2、如图,△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由.

二、探究新知:
问题1:观察两副三角板其中同样度数的两个三角尺相似吗?说说理由。

问题2:作△ABC和△A/B/C/使得∠A=∠A/,∠B=∠B/,这时它们的第三个角满足∠C=∠C/吗?分别度量这两个三角形的边长,计算△ABC和△A/B/C/的对应边的比是否相等?

小结:三角形相似的判定方法4:
的两个三角形相似.
几何语言:
证明:

三、巩固提升
如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为D.求AD的长.
解:

由三角形相似的条件可知,如果两个直角三角形满足_______或_____,那么这两个直角三角形相似.
四、思考探究:
对于两个直角三角形,我们还可以用“HL”判定它们全等。那么,满足斜边的比等于一组直角边的比的两个直角三角形相似吗?

已知:如图,Rt△ABC与Rt△A/B/C/中,∠C=∠C/=90°,
AB:A/B/=AC:A/C/.求证:Rt△ABC∽Rt△A/B/C/

结论:_________________________________________________

五、能力提升:
1、已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.

2、已知:如图,△ABC的高AD、BE交于点F.求证:.

相似三角形


第四章相似图形
5.相似三角形
一、学生知识状况分析
学生的知识技能基础:
在七年级的学习中,学生通过观察、测量、画图、拼摆等数学活动,体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。
学生活动经验基础:
上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析
(一)教材的地位和作用分析:
.《相似三角形》在本章中承上启下,
.体现了从一般到特殊的数学思想;
.是学生今后学习的基础;
.是解决生活中许多实际问题的常用数学模型.
即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。
(二)教学重点:
相似三角形定义的理解和认识。
(三)教学难点:
1..相似三角形的定义所揭示的本质属性的理解和应用;
2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(四)教法与学法分析:
本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
(五)教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
(六)教学目标分析:
通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
教学目标:
1知识与技能
(1).掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2).能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2过程与方法
(1).领会教学活动中的类比思想,提高学生学习数学的积极性。
(2).经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形
的定义及表示法,会运用相似比解决相似三角形的边长问题。
3情感态度与价值观
(1).经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与
一般的关系。
(2).深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析
本节课共设计了五个环节:1情景引入归纳定义
2运用定义解决问题
3加深理解探索规律
4回顾反思课堂小结
5.布置作业

第一环节情景引入归纳定义
活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义)
1.上节课我们学习了相似多边形的定义及记法,请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系?

2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形?
3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗?
4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similartrangles)
如△ABC与△DEF相似,记作△ABC∽△DEF
注意:表示两个三角形相似时,要向表示全等
三角形那样把对应顶点写在对应的位置上。
活动目的:通过对旧知识的回顾、经历与相似多边形有关概念的类比,培养学生通过类比探索得到新知识的能力,进而掌握相似三角形的定义及表示法。
活动实际效果:学生的学习热情非常高,轻而易举就归纳出相似三角形的定义,且较好地掌握了相似三角形的表示法。

第二环节:运用定义解决问题
活动内容:想一想议一议例1例2
1.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质)
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?
对应边呢?
解:∠A与∠D、∠B与∠E、∠C与∠F.
是对应角
AB与DEAC与DFBC与EF
是对应边
∠A=∠D、∠B=∠E、∠C=∠F.
=.=
相似三角形性质:相似三角形的对应角相等,对应边成比例。
2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由)
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
解:(1)两个全等三角形一定相似.
因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.
(2)两个直角三角形不一定相似.
如图,虽然都是直角三角形,
但也只能确定有一对角即直角相等,
其他的两对角可能相等,也可能不相等,
对应边也不一定成比例,所以它们不一定相似.
两个等腰直角三角形一定相似
.如图,在Rt△ABC和Rt△DEF中,
∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有
∠A=∠D,∠B=∠E,∠C=∠F.
再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB=b
DF=EF=a,DE=a
===1
所以两个等腰直角三角形一定相似.
(3)如图,两个等腰三角形不一定相似.
如图:因为等腰只能说明一个三角形中有两边相等,
但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似
如图:两个等边三角形一定相似.
因为等边三角形的各边都相等,各角都等于60度,
因此这两个等边三角形一定有对应角相等、
对应边成比例,所以它们一定相似
.例1例2(展示课件,教师引导分析、学生自主探索,培养学生应用知识解决问题的能力)
3.如图,有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长都是3.5cm,求该草坪其他两边的实际长度.
解:草坪的形状与其图纸上相应的形状相似,
它们的相似比是2000∶5=400∶1
如果设其他两边的实际长度都是xcm,
那么=
则x=3.5×400=1400(cm)=14(m)
所以,草坪其他两边的实际长度都是14m.
4.如图,已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,∠BAC=45°,
∠ACB=400,求
(1)∠AED和∠ADE的度数。
(2)DE的长.
解:(1)因为△ABC∽△ADE.
所以由相似三角形对应角相等,得
∠AED=∠ACB=40°
在△ADE中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,
所以∠ADE=180°-40°-45°=95°.
(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
=即=

所以DE==43.75(cm)
活动目的:让学生动手画一画、量一量、算一算得出两个三角形之间的是否相似?有什么关系?进而考察学生的自主学习情况(包括独立思考能力)和小组间的互助情况。
活动实际效果:学生普遍对教材的内容能够较好地掌握,但对知识的延伸和拓展,由于教材缺乏相关内容,学生的思维无法独立产生飞跃,所以需要教师备课时先做好延伸的准备,即备好相关的内容。这样,教学时学生就犹如享受知识的大餐,使之心理上产生愉悦,进而较好地掌握知识。

第三环节加深理解探索规律
活动内容:想一想合作探究巩固练习(展示课件,教师引导、学生合作探究,寻找解决问题的规律)
1.想一想
在例2的条件下,图4-16中有哪些线段成比例?
解:成比例线段有=
△ABC∽△ADE
===
=即=
图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.
2.合作探究
1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.

(第1题)
解:在(1)中
ABO∽CDO
=
x=32
在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
n=55,m=80,y=
2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5cm,(1)求△A′B′C′斜边A′B′的长,(2)求△A′B′C′斜边A′B′上的高。
解:(1)如图所示,因为△ABC∽△A′B′C′,
A′且相似比为3∶1.
所以=.即=
A′B′=(cm)D
(2)C′D′=A′B′=(cm)
3.巩固练习:略
活动目的:加深对相似三角形概念和性质的理解,发展学生的应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
活动实际效果:大部分学生普遍掌握较好,只是个别学生思维能力和计算能力较慢,没有时间等待他们探索出给论,这样他们对这节课所学的内容理解不透彻,应用新知解决问题能力也较差,今后要注意给每一个学生留有足够的时间和空间,使不同的学生有不同的发展。

第四环节回顾反思课堂小结
活动内容:1.这一节课你学到了什么?有什么收获?
2.

3.相似三角形的判定方法——定义法
活动目的:培养学生的归纳总结能力,加深对知识的理解和应用能力。
活动实际效果:通过小结发现每个学生都在积极思索这节课的内容,并能正确回答出相似三角形的定义、性质、以及它的表示法。

第五环节布置作业
活动内容:习题4.61、2

四、教学反思
《相似三角形》是在学生已经学习了《相似多边形》后学习的内容。其主要教学目标是让学生在通过类比、探究的过程中,获得三角形相似的概念;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了教学目标。
在这节课中,我认为有以下几点感受较好:
1、这一节课通过情景创设,引入新知较恰当,切合实际。这样引入能很好的使学生体验温故而知新的道理,从而调动学生探索新知的兴趣和学习的积极性。
2、这节课较多的给学生提供自主学习,自主操作、自主活动的机会。不论是回顾旧知,还是探究新知,都是教师引导,学生自主探索。体现了学生是数学学习的主人的新理念。
3、在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力。比如对特殊三角形,提出这两个三角形有什么关系?理由是什么?对任意两个三角形,老师请学生量一量、算一算,结果都是由学生自己操作、判断得出。体现了教师是数学学习的组织者、引导者和合作者的新理念。
这节课感到遗憾的是有些学生操作计算速度慢,没有时间等待他们探索出给论。这样他们对这节课所学的内容理解不透彻,不能更好应用新知解决问题,今后要加强注意给每个学生留有足够的时间和空间去思维,并且对不同的学生教师应提出不同的问题,使不同的学生得到不同的发展,进而使每个同学都得到应有的发展。

相似三角形的性质(1)导学案


教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“相似三角形的性质(1)导学案”,希望能为您提供更多的参考。

第十课时相似三角形的性质(1)
教学目标:
1、探索相似三角形的性质,会运用相似三角形的性质解决有关的问题;
2、发展学生合情推理,和有条理的表达能力
教学重点:相似三角形的性质
教学难点:有条理的表达与推理
教学设计:
一、情境创设
(1)前面学习了相似三角形、相似多边形的概念,知道如果两个三角形或两个多边形相似,那么它们的对应角、对应边成比例。相似三角形、相似多边形是否还有其他的一些性质呢?
(2)所有的正方形都是相似形(它们的对应角相等,对应边成比例)。
若正方形的边长为1,则周长为4,面积是1;若正方形的边长为2,则周长为8,面积是4;
若正方形的边长为3,则周长为12,面积是9;若正方形的边长为a,则周长为4a,面积是a2。
这些正方形间周长的比,面积的比与其边长的比之间有怎样的关系呢?
二、探索活动
1、若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的周长比等于相似比吗?
问题1.为了解决这个问题,不妨设这个相似比为k,只要考虑什么就可以了?
问题2.相似比为k,那么哪些线段的比也等于k?
问题3.这两个三角形的周长又分别与哪些线段有关?
问题4.如何得出这两个三角形的周长比与相似比k的关系?
得出:相似三角形的周长的比等于相似比
问题5.你能运用类似的方法说明“相似多边形的周长等于相似比吗?”
得出:相似多边形的周长等于相似比
2、问题1.若△ABC∽△A′B′C′,那么△ABC与△A′B′C′的面积比与相似比又有什么关系呢?
已知△ABC∽△A′B′C′,相似比是k,AD和A′D′分别是△ABC和△A′B′C′的高。
因为∠B=∠B′,∠ADB=∠A′D′B′=90°所以△ABD∽△A′B′D′
所以,即AD=kA′D′,
所以
得出:相似三角形的面积比等于相似比的平方
问题2.你能类似地得出相似多边形的面积比与相似比的关系吗?
得出:相似多边形的面积比等于相似比的平方。
三、例题讲解
例1、(P106例1)在比例尺为1:500的地图上,测得一个三角形地块ABC的周长为12cm,面积为6cm2,求这个地块的实际周长和实际面积。
2、若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm
3、在△ABC中,F、G分别是AB、AC的中点,那么△AFG与四边形FBCG的面积之比是
4、如图,ΔABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S四边形DFGE:S四边形FBCG=_________.

5、如图,在△ABC中,DE//BC,若,试求△DOE与△BOC的周长比与面积比。
6、如图,梯形DBCE中,DE∥BC,若S△EOD:S△BOC=1:9,求DE:BC的值.
添加:S1=2,求梯形DBCE的面积。

练习:如图,把△ABC沿AB边平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=2,求此三角形移动的距离BE的长。

7、如图,在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC交AB于E,EC交AD于F
(1)说明:△ABC∽△FCD
(2)若S△FCD=5,BC=10,求DE的长。
四、作业:

文章来源:http://m.jab88.com/j/59897.html

更多

最新更新

更多