88教案网

有理数与无理数

每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“有理数与无理数”,仅供参考,大家一起来看看吧。

怀文中学2012—2013学年度第二学期教学设计
初一数学2.2有理数与无理数JaB88.cOM

主备:陈秀珍审核:日期:2012-9-1
学习目标:1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。
2.会判断一个数是有理数还是无理数。经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。
教学重点:区分有理数与无理数,知道无理数是客观存在的。感受夹逼法,估算无理数的大小。.
教学难点:会判断一个数是有理数还是无理数,体会“无限”的过程。
教学过程:
一.自主学习(导学部分)
1、我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?
在小学我们学过自然数、小数、分数.,在初一我们还学过负数。我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充了范围,从形式上来看,我们学过的一部分数又可以分为整数和分数。我们能够把整数写成分数的形式吗?如:5,-4,0……可以吗?可以!如5=,-4=,0=我们把可以化为分数形式“mn(m、n是整数,n≠0)”的数叫做有理数;
2、想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?有限小数如0.3,-3.11……能化成分数吗?它们是有理数吗?0.3=,-3.11=,它们是有理数。请将1/3,4/15,2/9写成小数的形式。1/3=0.333...,4/15=0.26666...,2/9=0.2222.....这些是什么小数?循环小数,反之循环小数也能化为分数的形式,它们也是有理数!循环小数如何化为分数可以一起学习书P17、读一读
二.合作、探究、展示
有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
1.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。
(1)设大正方形的边长为a,a满足什么条件?
(2)a可能是整数吗?说说你的理由。
(3)a可能是分数吗?说说你的理由
(1)a是正方形的边长,所以a肯定是正数.因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.
(2)“12=1,22=4,32=9,...越来越大,所以a不可能是整数”,因为2个正方形的面积分别为1,1,而面积又等于边长的平方,所以面积大的正方形边长就大,因为a2大于1且a2小于4,所以a大致为1点几,即可判断出a是大于1且小于2的数。
(3)因为,…两个相同分数因数的乘积都为分数,所以a不可能是分数.也可按书P16、问题6选取无限多大于1且小于2的两个相同分数的乘积来考查。体会“无限”的过程,认可找不到一个数的平方等于2,即a也不可能是分数。
在等式a2=2中,a既不是整数,也不是分数,也就是不能写成mn的形式,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.
2、算一算:
边长a面积S
1<a<21<S<4
1.4<a<1.51.96<S<2.25
1.41<a<1.421.9881<S<2.0164
1.414<a<1.4151.999396<S<2.002225
1.4142<a<1.41431.99996164<S<2.00024449
(1)a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来。
a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
(2)请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.
除上面的a,b外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3、有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.三.巩固练习
1.判断题.(1)无理数都是无限小数.(2)无限小数都是无理数.
(3)有理数与无理数的差都是有理数.(4)两个无理数的和是无理数.
2.把下列各数填在相应的大括号内:35,0,π3,3.14,-23,227,49,-0.55,8,1.1212212221…(相邻两个1之间依次多一个2),0.2111,999
正数集合:{…};负数集合:{…};
有理数集合:{…};无理数集合:{…}.
3.以下各正方形的边长是无理数的是()
(A)面积为25的正方形;(B)面积为16的正方形;(C)面积为3的正方形;(D)面积为1.44的正方形.
四.课堂小结
1.什么叫无理数?2.数的分类?3.如何判定一个数是无理数还是有理数.
五.布置作业P17/1P60/1
六.预习指导
教学反思:

延伸阅读

七年级上2.2有理数与无理数导学案(苏教版)


老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“七年级上2.2有理数与无理数导学案(苏教版)”,供您参考,希望能够帮助到大家。

七年级上2.2有理数与无理数导学案(苏教版)
教学目标:
掌握有理数和无理数的概念,并能正确判断它们,初步感悟逼近的数学思想,体会“无限”的过程,发展数感。
教学重、难点:
重点:有理数的分类,无理数概念,能估计无理数的大小
难点:数的分类及判断
教学过程:
一、课前准备
1.写两个有理数
2.写两个无理数
3.一个正方形的面积是40平方厘米,它的边长在两个相邻整数之间,
这两个整数是和
二、课堂探究
(1)有理数的概念:
________________________________________
问题:有限小数和循环小数是有理数吗?
(2)有理数的分类:
①分两类,即
_____________
有理数

_____________
活动一:(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.3333…、0.2666…化为分数形式吗?
活动二:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形

下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?
a可能是整数吗?a可能是分数吗?
无理数:无限不循环小数。举例圆周率π,0.1010010001…、—1.4141141114…
有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
3.例题讲解:
例1.把下列各数填在相应集合内:
正数集合:{,…}
负数集合:{,…}
整数集合:{,…}
分数集合:{,…}
例2.把下列各数填在相应的大括号内:,0,,3.14,-,,,-0.55,8,
1.1212212221…(相邻两个1之间依次多一个2),0.211,999
正数集合:{…};
负数集合:{…};
有理数集合:{…};
无理数集合:{…}.
四、课堂小结:
本节课的收获与疑惑
五、课堂检测
《课课练》2.2有理数与无理数
六、课后作业
1.已知下列各数:
其中正数是,负数是,
整数是,分数是.
2.关于0的说法正确的是()
A.不是正数也不是负数B.是正数C.是负数D.是正整数
3.既不是正数也不是整数的有理数是()
A.0和负分数B.负分数C.负整数和负分数D.正整数和正分数
4.把下列各数填在表示它所在的数集的括号内:
-6,9.3,,42,0,-0.33,-0.333...,1.41421356,,3.3030030003...,-3.1415926
整数集合{___________________________________________...}
分数集合{___________________________________________...}
有理数集合{___________________________________________...}
无理数集合{___________________________________________...}

1.2有理数


老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“1.2有理数”,欢迎阅读,希望您能够喜欢并分享!

1.2有理数
一、教学目标:
(一)知识与技能
1、借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛性。
2、理解有理数的概念。
3、会用正数、负数、零表示生活中具有相反意义的量。
4、理解有理数的分类。
(二)能力训练要求
通过大量的现实实例,多彩的数学活动机会,让学生体验数学和现实生活的紧密联系,提高学习的兴趣,培养学习的合作交流能力,促进对知识的理解和掌握。
二、重点、难点:
1、重点:有理数的概念。
2、难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
三、教学过程:
1、创设情景,引入新知:
将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:
(说明:学生自己做的作业,较能引起学生的兴趣。)
问:材料中含有哪几类数据?
(1)本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛。我市爱绿艺校代表队的32名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的荣誉却是幼儿组最高的金奖。
答:都是自然数。
(2)据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和倍,是世界上公路隧道最多的国家。我国目前最长的隧道是铁路线上的秦岭隧道,全长18.46公里。正在施工的双向分离式四车道终南山隧道是世界第二、亚洲第一的公路隧道。
答:有自然数,分数。
师:我们在小学的时候已经学过自然数和分数,这些数能够满足我们生活的需要吗?还会不会有新的数?
(3)珠穆朗玛峰是喜玛拉雅山脉的主峰,海拔8848米,是中国第一高峰,也是地球上第一高峰;吐鲁番盆地位于新疆维吾尔自治区中部,天山山地东端。盆地底部海拔-155米。是中国海拔最低处。
2、具有相反意义的量:
师:这里的两个数据分别表示什么意思?“-155”这个带符号的数我们以前没有见过,它在这里表示什么意思?
生:地理上学过测量高度时,规定海平面的高度为0米,8848表示比海平面高出8848米,而-155表示比海平面低155米。
切换到另一个投影材料:
月球表面白天气温可高达123℃,夜晚可低至-233℃,图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
师:这里123℃,-233℃这两个量分别表示什么意思?
生:123℃表示零上123℃,-233℃表示零下233℃。
师:你还在哪些地方见过用带“-”这个号的数?
生:企业的年收入的盈利与亏损中的亏损数经常用带“-”号的数表示,如盈利500用500记,亏损500用-500记。
生:股票中上升5元记做5,下跌3元记做-3。
师:大家观察黑板上我们刚刚举的这些例子,每个例子中出现的一对量,有什么共同特点呢?
生:这里出现的每一对量,都是表示相反意义的量。
3、正数和负数
师:这里零下233℃不用-233℃表示,直接用自然数233℃表示,可以吗?
生:不可以,因为233℃表示零上233℃而不是零下233℃。
师:看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需。在日常生活和生产实践中,我们经常会这种具有相反意义的量,如表示高度有“海拔上”与“海拔下”,温度有“零上”与”零下”,经营情况有“盈利”与“亏损”等等,为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外)表示,这样的数叫做正数。把另一种与之相反的量规定为负,用过去学过的数(零除外)前面放上“-”这个符号来表示,“-”这个符号称为负号,如-155,-233等,这样的数就叫做负数。读作“负155,负233”。与负号具有相反意义的符号是“+”号,为了突出符号正数前面可以放上正号(常省略不写)。特别要指出的是:零既不是正数也不是负数。
【做一做】:P7
2、填空:
(1)规定盈利为正,某公司去年亏损了2.5万元,记做_______万元,今年盈利了3.2万元,记做_________万元;
(2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔________米,吐鲁番盆地最低点低于海平面155米,记做海拔_______米。
【课内练习】:P8
1、填空。
(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正,汽车向北行驶75km,记做_______km(或______km)汽车向南行驶100km,记做_____km.
(2)如果向银行存入50元记为50元,那么-30.50元表示_________
(3)规定增加的百分比为正,增加25%记做________,-12%表示__________.
师:在现实生活中有具有相反意义的量实在挺多的,大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结)
一般情况下,正、负规定如下:
符号具有相反意义的量
+零上盈利收入北存入增加……
-零下亏损支出南取出减少……
4、数的分类。
师:通过今天的学习,我们数的家族出现了新的成员——负数。我们来回顾一下我们学过的数有哪些呢,并进行分类。
生讨论结果:

师:还有其他的分类方法吗?
生:

【做一做】:P7
1、(口答)读出下列各数,它们各是正数还是负数?
7,-7.46,0,
师生总结:判断正数与负数的关键师看它前面的正、负号:
有“-”号就是负数,有“+”号或省略了正号的数就是正数。
例:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?
解:是正数;是负数;是整数;是分数,都是有理数。
5、小结
(1)用正数与负数表示相反意义的量。
(2)正数与负数:像1,+2.5等这样的数叫正数。像-6,-1.4,等这样的数叫负数。0既不是正数也不是负数。
(3)正数与负数在形式上的区别:负数一定带有负号。
(4)数的分类

有理数


老师职责的一部分是要弄自己的教案课件,是认真规划好自己教案课件的时候了。对教案课件的工作进行一个详细的计划,接下来的工作才会更顺利!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“有理数”,希望能对您有所帮助,请收藏。

人教版七年级第一章第二节有理数教案
【教学目标】
知识技能
1.进一步加深对负数的认识。
2.掌握有理数的概念,会对有理数按照一定的标准进行分类,初步了解“集合”的含义。
过程方法
体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度
通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】
正确理解有理数的概念。
【教学难点】
正确理解分类的标准和按照定的标准进行分类。
【复习引入】
1.我们知道,所有的分数都可以写成两个整数的比.
有限小数0.37可以写成两个整数的比吗?
无限循环小数也可以写成两个整数的比吗?
所有的有限小数都是分数吗?所有的无限循环小数呢?
结论:所有的有限小数和无限循环小数都是分数.
想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?
你能确定小数3.14159265…是不是分数吗?
2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同?对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.
3.下列负数哪些是负分数?
-12,,-0.33,.
【教学过程】
1.所有正整数组成正整数集合,所有负整数组成负整数集合.
请把下列各数填入它所属于的集合的大括号里:
1,0.0708,-700,-3.88,0,3.14159265,,.
正整数集合:{…}负整数集合:{…}
整数集合:{…}
正分数集合:{…}负分数集合:{…}
分数集合:{…}
(注意:大括号内的省略号表示什么?)
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……
2.归纳概念:整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称为分数。
有理数:整数和分数统称为有理数。
3.有理数的分类:
说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;
③零是整数,零既不是正数,也不是负数.
4.典型例题
例1.把下列各数填入表示它所在的数集的圈内:
-5,-1.2,50,0.618,0,,-1.01001,π,-5%,0.3

负分数集合非负整数集合
有理数集合

正有理数集合整数集合
解:
负分数集合非负整数集合

正有理数集合整数集合

有理数集合
例2.下列命题:(1)0是正数;(2)0是整数;(3)0最小的有理数;(4)0是非负数;(5)0是偶数。正确的命题个数是…………………………()
A.2个B.3个C.4个D.5个
解析:选B。(2)(4)(5)正确。
例3.在5分钟内背过5个单词为过关,超过的记为正。现在小明的记录为-3,小华的记录为0,小军的记录为2,小丽的记录为+1,则:
(1)四个人中有几个人过关?(2)他们分别背过了几个单词?
(3)记录中的四个数字统属哪一类有理数?
解:(1)小华、小军、小丽3个过关。
(2)小华背5个,小军背7个,小丽背6个。
(3)属于有理数中的整数集合。

【课堂作业】
1.把下列各数填入它所属于的集合的圈内:
正整数集合负整数集合

正分数集合负分数集合
思考:上面的练习中四个集合合并在一起就是全体有理数的集合吗?

2.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7,-5,,,79,0,0.67,,+5.1
3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
4.如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:
1)属于正数集合,但不属于整数集合的数;
2)属于整数集合,但不属于正数集合的数;
3)既属于正数集合,又属于整数集合的数.
将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?
5.在数-100,70.8,-7,π,-3.8,0,,,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

参考答案:
1.

正整数集合负整数集合

正分数集合负分数集合
答:不是。因为他们漏掉了0。
2.整数有7,-5,79,0。
分数有。
正数有7,79,0.67,+5.1,。
负数有。
3.0是整数;自然数一定是整数;0不是正整数;
整数不一定是自然数,因为负整数就不是自然数。
4.略
5.不是分数的是-100,-7,π,0,;不是小数的是-100,-7,0;
不是有理数的是π,。
【教学反思】
1.本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2.本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

文章来源:http://m.jab88.com/j/25763.html

更多

最新更新

更多