八年级上册《与三角形有关的线段》第二课时学案
一、内容和内容解析
1.内容
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.
二、目标和目标解析
1.教学目标
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2.教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
四、教学过程设计
1.抛砖引玉,提出问题
先演示画三角形的一条高,再给出问题:
(1)任画一个三角形,你能画出它的三条高吗?
(2)同一个三角形的三条高线有什么位置关系?
(3)不同类型的三角形的三条高线的交点位置有什么差别?
师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法.
设计意图:这一环节是一个重要的实践活动,需要学生动手实践,动口交流,动脑思考,加深理解高线的概念和掌握画高线的作图能力.
2.从实践上升到理论,形成概念
师生活动:
定义:从三角形的一个顶点出发,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高.
三角形的高有三条,特别强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心.
归纳:锐角三角形有条高,它们相交于一点,交点在三角形;
直角三角形有条高,它们相交于一点,交点在三角形;
钝角三角形有条高,它们所在直线相交于一点,交点在三角形.
注意:三角形的高是线段
(几何语言)∵AD是ΔABC上的高
∴AD⊥BC(∠ADB=∠ADC=90)
逆向:∵AD⊥BC垂足是D
∴AD是ΔABC的边BC上的高
几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成知识结构.
设计意图:让学生体会由实践到理论的过程,培养学生的归纳总结能力.
补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母.
师生活动:结合具体图形,教师引导学生养成良好的作图习惯.
设计意图:进一步加深学生对几何符号和几何语言的熟悉.
3.类比学习,掌握几何探究的基本方法.
用相同的探究方法引导学生学习三角形的中线和角平分线.
师生活动:与高线的探究类似.
4.归纳总结,形成知识结构.
师生活动:师生共同完成这个表格.
三角形的重要线段定义图形表示法
三角形
的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段
1.AD是△ABC的BC上的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
三角形
的中线三角形中,连结一个顶点和它对边中点的线段
1.AE是△ABC的BC上的中线.
2.BE=EC=BC.
三角形的
角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
1.AM是△ABC的∠BAC的平分线.
2.∠1=∠2=∠BAC.
设计意图:通过这一活动的设计,提高学生归纳概括的能力,了解几何语言简洁性.
5.应用巩固
课本上P5第1、2题
补充练习:
(1)如图,AE是△ABC的中线,EC=6,DE=2,则BD的长为().
A.2B.3C.4D.6
解析:因为AE是△ABC的中线,
所以BE=EC=6.又因为DE=2,
所以BD=BE-DE=6-2=4.
答案:C
(2)下列说法正确的是().
①平分三角形内角的射线叫做三角形的角平分线;
②三角形的中线、角平分线都是线段,而高是直线;
③每个三角形都有三条中线、高和角平分线;
④三角形的中线是经过顶点和对边中点的直线.
A.③④B.③C.②③D.①④
解析:任何一个三角形都有三条高、中线和角平分线,并且它们都是线段,不是射线或直线,因此只有③正确,故选B.
答案:B
(3)三角形的三条高在().
A.三角形的内部B.三角形的外部
C.三角形的边上D.三角形的内部、外部或边上
解析:三角形的三条高交于一点,但有三种情况:当是锐角三角形时,这点在三角形内部;当是直角三角形时,这点在三角形直角顶点上;当是钝角三角形时,这点在三角形外部,所以只有D正确.
答案:D
学生通过解决这样的应用问题,特别是(3)中又要用到分类讨论的思想,学生通过解决问题的过程加深理解不同类型的三角形其高线都是交于一点,但交点位置却不同.
设计意图:除了考查学生的灵活运用的能力外,逐步培养学生一些基本的数学思想,还能突破难点加深学生对三角形高线位置的理解,一举多得.
6.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)三角形的高、中线、角平分线等有关概念及它们的画法.
(2)三角形的高、中线、角平分线的几何表达及性质的简单应用.
师生活动:教师引导,学生小结.
设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.
8.布置作业:
教科书第8页第3,4题.
11.1与三角形有关的线段
一.学习目标
1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学,热爱生活的情感。
二.学习重难点
三角形的性质和分类及应用
三.学习过程
第一课时
三角形的边
(一)构建新知
1.阅读教材2~4页
(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?
(二)合作学习
1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查
1.若一个三角形三边长分别为2,3,x,则x的值可以为____(只需填一个整数)。
2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为____cm。
4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A.三边不等的三角形B.只两边相等的三角形
C.三边相等的三角形D.不等边三角形和等腰三角形
5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,
不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,
且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏
此木框,则任两螺丝的距离之最大值为()。
A.5B.6C.7D.10
6.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。
(四)学习评价
(五)课后练习
1.学习指要1~2页
2.教材8~9页1题,2题,6题,7题
第二课时
三角形的高、中线与角平分线
(一)构建新知
1.阅读教材4~5页
(1)如图,在△ABC中,作BC边上的
高AD和中线AE;并作∠A的角平分线AF。
(2)三角形的高,中线,角平分线分别有________条。
(3)三角形的三条中线_______点,这点叫三角形的_____心。
(二)合作学习
1.作下列△ABC各边上的高。
(1)图(1)的三条高在△ABC的_________,图(2)三条高在△ABC的___________________,图(3)三条高在△ABC的______________________________。
(2)这三条高都__________一点;分别在三角形的______________________。
(三)课堂检查
1.如图,在△ABC中,BD是∠ABC的角平分线,
已知∠ABC=80°,则∠DBC=____°。
2.在△ABC中,AD为BC边的中线,若△ABD
与△ADC的周长差为3,AB=8,则AC=____________。
3.如图,在△ABC中,CD平分∠ACB,DE∥AC,DC∥EF,
则与∠ACD相等角有___________个。
4.三角形中的角平分线、中线、高都是三条()。
A.直线B.射线C.线段D.无法确定
5.下列说法正确的是()
①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部。
A.①②③B.①②C.②③D.①③
6.如图,AD为△ABC的中线,BE为△ABD的中线。若△ABC面
积为40,BD=5,则△BDE中BD边上的高是多少?
(四)学习评价
(四)课后练习
1.学习指要2~3页
2.教材8~9页3题,4题,8题,9题
第三课时三角形的稳定性
(一)构建新知
1.阅读教材6~7页
(1)在工程建筑中经常采用三角形的结构,这是因为_______________;伸缩门采用四边形的结构,这是因为_________________________。
(2)完成教材7页练习
(二)合作学习
1.要使六边形不变形至少要定几根木条,
有几种订法?
(三)课堂检查
1.小明用竹竿扎了一个平行四边形框架,其边长分别为40cm和30cm,由于四边形容易变形,学习过后,小明用一根竹竿做斜拉秆将四边形定形,则此斜拉秆的选择范围是___________cm。
2.不是利用三角形稳定性的是()
A.自行车的三角形车架B.三角形房架
C.照相机的三角架D.矩形门框的斜拉条
3.如图,在生活中,我们经常会看见在电线杆上拉两条钢
线,来加固电线杆,这是利用______________________。
4.要使八边形不变形,则至少要钉上______根木条。
5.图中的五角星是用螺栓将两端打有孔的5根木条连接而
构成的,它的形状不稳定.如果用在图中木条交叉点打孔
加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓
尽可能少,那么需要添加螺栓()
A.1个B.2个C.3个D.4个
6.如图,△ABC中,AB=AC,AC边上的中线把△ABC的
周长分为24和30两部分,求△ABC三边的边长。
(四)学习评价
(五)课后练习
1.学习指要4~5页
2.教材8~9页5题,10题
八年级数学上册《与三角形有关的线段》教案
一、情境导入
出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.
教师利用多媒体演示三角形的形成过程,让学生观察.
问:你能不能给三角形下一个完整的定义?
二、合作探究
探究点一:三角形的概念
图中的锐角三角形有()
A.2个
B.3个
C.4个
D.5个
解析:(1)以A为顶点的锐角三角形有ABC、ADC共2个;(2)以E为顶点的锐角三角形有EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.
方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.
探究点二:三角形的三边关系
【类型一】判定三条线段能否组成三角形
以下列各组线段为边,能组成三角形的是()
A.2cm,3cm,5cm
B.5cm,6cm,10cm
C.1cm,1cm,3cm
D.3cm,4cm,9cm
解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.
方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.
【类型二】判断三角形边的取值范围
一个三角形的三边长分别为4,7,x,那么x的取值范围是()
A.3<x<11B.4<x<7
C.-3<x<11D.x>3
解析:三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.
方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.
【类型三】等腰三角形的三边关系
已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.
解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.
解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.
方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.
【类型四】三角形三边关系与绝对值的综合
若a,b,c是ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.
解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.
三、板书设计
三角形的边
1.三角形的概念:
由不在同一直线上的三条线段首尾顺次相接所组成的图形.
2.三角形的三边关系:
两边之和大于第三边,两边之差小于第三边.
本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.
文章来源:http://m.jab88.com/j/57152.html
更多