课题:11.1.1三角形的边
【学习目标】
1、知道三角形的概念及其表示方法;
2、知道三角形的三边关系,能运用三角形的三边关系解决实际问题。
【学习重点】
三角形的三边关系。
【学习难点】
运用三角形的三边关系解决实际问题
【学习过程】
※知识链接:
1、通过阅读课本引言内容,你能从精美的画中找出三角形吗?
2、一个三角形中有几条线段,几个特殊点?
※合作与探究:
一、自主学习
1、阅读教材第2至第4页,用红笔对有关概念勾画并完成下列问题。
(1)由不在______________的三条线段____________相接所组成的图形,叫做三角形。
(2)“三角形”用符号_______表示,如右下图,顶点是A、B、C的三角形,记做__________,
读作_____________。
(3)如何表示右图中三角形的边及角。
2、三角形的分类:
(1)按角分类:
(2)按边分类:
3、找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑
二、合作探究
探究1:三角形的有关概念
例1:如下图,点B、D、C、E在同一直线上,图中共有几个三角形?表示出这些三角形,并写出其中一个三角形的边和角。
探究2:三角形三边的关系
例2:任意画一个△ABC,假设有一只小虫从点B出发到点C,它有几条线路可以选择?各条线路的长一样吗?
结论:
(1)三角形两边之和______第三边
(2)三角形两边之差______第三边
例3:用一条长为18cm的细绳围成等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?
(2)能围成有一边的长是4cm的等腰三角形吗?为什么?
※随堂检测
1、三角形是指()
A、由三条线段所组成的封闭图形
B、由不在同一直线上的三条线段首尾顺次相接所组成的图形
C、由在同一直线上的三条线段首尾顺次相接所组成的图形
D、由三条线段首尾顺次相接所组成的图形
2、如图1,三角形的个数有()
A、4个B、6个C、8个D、3个
2、如图2中有几个三角形?用符号表示这些三角形。
3、长为10、7、5、3的四根木条,选其中三根组成三角形,有几种选法?为什么?
※拓展提高
1、下面各组数中不能构成三角形的一组数是()
A、0.2,0.6,0.7B、5k,7k,10k(k0)
C、6,5,10D、1,1,33
2、三角形的三边长分别是3,1-2,8,则的取值范围是()
3、一个等腰三角形的一边长为6cm,周长为20cm,求其它两边的长。
教(学)后反思:_____________________________________________________________________
_____________________________________________________________(实际使用课时______节)
11.1.3三角形的稳定性
【学习目标】
1、通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性;
2、体会稳定性与没有稳定性在生产、生活中的广泛应用。
【学习重点】
了解三角形的稳定性及其在生产、生活中的广泛应用。
【学习难点】
1、三角形稳定性的得出;
2、体会三角形稳定性在生产和生活中的应用。
【学习过程】
※知识链接
1、如图,在△ABC中,AD⊥BC,BE=CE,AF是三角形的角平分线,那么三角形的三边有什么关系?根据上述条件,你还能得到什么结论?
2、在我们生活和生产中哪里用到了三角形?
※合作与探究
1、通过实际操作探究三角形的稳定性
(1)如图,在盖房子时,在窗框未安装好之间,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做?
(2)用三根木条钉成一个三角形木架,然后扭动它,它的形状会变吗?
(3)用四根木条钉成一个四边形木架,然后扭动它,它的形状会变吗?
(4)在四边形的木架上再钉一根木条,将它的一对对点连接起来,然后扭动它,它的形状会变吗?
通过上述实验操作,可以得到结论:三角形_____变形,即三角形_____稳定性,四边形____变形,即四边形_________稳定性。
2、通过生活中的实例感受数学知识在生产和生活中的实际应用
(1)三角形的稳定性在我们生活中有哪些应用?
(2)三角形的稳定性在我们生产中有哪些应用?
※随堂检测
1、如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了
__________________________________。
2、下列图形中哪些具有稳定性?
3、要使四边形木架不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?
教(学)后反思:_________________________________________________________________
_____________________________________________________________________(实际使用课时______节)
八年级数学上册《与三角形有关的线段》教案
一、情境导入
出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.
教师利用多媒体演示三角形的形成过程,让学生观察.
问:你能不能给三角形下一个完整的定义?
二、合作探究
探究点一:三角形的概念
图中的锐角三角形有()
A.2个
B.3个
C.4个
D.5个
解析:(1)以A为顶点的锐角三角形有ABC、ADC共2个;(2)以E为顶点的锐角三角形有EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.
方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.
探究点二:三角形的三边关系
【类型一】判定三条线段能否组成三角形
以下列各组线段为边,能组成三角形的是()
A.2cm,3cm,5cm
B.5cm,6cm,10cm
C.1cm,1cm,3cm
D.3cm,4cm,9cm
解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.
方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.
【类型二】判断三角形边的取值范围
一个三角形的三边长分别为4,7,x,那么x的取值范围是()
A.3<x<11B.4<x<7
C.-3<x<11D.x>3
解析:三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.
方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.
【类型三】等腰三角形的三边关系
已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.
解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.
解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.
方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.
【类型四】三角形三边关系与绝对值的综合
若a,b,c是ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.
解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.
三、板书设计
三角形的边
1.三角形的概念:
由不在同一直线上的三条线段首尾顺次相接所组成的图形.
2.三角形的三边关系:
两边之和大于第三边,两边之差小于第三边.
本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.
文章来源:http://m.jab88.com/j/56734.html
更多