88教案网

八年级上册《等腰三角形的轴对称性》1导学设计

为了促进学生掌握上课知识点,老师需要提前准备教案,大家应该在准备教案课件了。用心制定好教案课件的工作计划,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?为满足您的需求,小编特地编辑了“八年级上册《等腰三角形的轴对称性》1导学设计”,供大家借鉴和使用,希望大家分享!

《等腰三角形的轴对称性》1导学设计

教学目标

1.理解等腰三角形的轴对称性及其相关性质.

2.能够证明等腰三角形的性质定理.

3.能够运用等腰三角形的性质定理解决相关问题.

4.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.

教学重点

等腰三角形的轴对称性及其相关的性质.

教学难点

等腰三角形的性质证明及其应用.

教学过程(教师)

学生活动

设计思路

一、情境引入

1.观察图中的等腰三角形ABC,分别说出它们的腰、底边、顶角和底角.

2.把该等腰三角形沿顶角平分线对折展开,你有什么发现?

1.学生思考、回答.

2.学生动手操作、实践.

复习等腰三角形的有关概念.

通过动手操作让学生感悟到等腰三角形是轴对称图形.

二、探究活动

问题一:等腰三角形是轴对称图形吗?它的对称轴是什么?

问题二:找出等腰三角形ABC对折后重合的线段和角.

问题三:由这些重合的线段和角,你能发现等腰三角形的哪些性质呢?说一说你的猜想.

学生分组讨论,交流结果.

在前面动手操作、直观演示的基础上引导学生如何利用折痕这条辅助线,构造出两个全等的三角形,从而让学生经历演绎推理的过程,从而主动地发现证明思路,为今后学生进行探索活动积累数学活动经验.

三、归纳总结

等腰三角形的两底角相等.

等腰三角形底边上的高线、中线及顶角平分线重合.

思考:

1.你能证明上述定理吗?

2.你有不同的证明方法吗?

课堂练习:课本P61-62第1、2题.

思考:1.你能证明上述定理吗?2.你有不同的证明方法吗?

具体如下:

1.做顶角的平分线,用“SAS”.

2.作底边上的中线,用“SSS”.

3.作底边上的高,用“HL”.

文字语言

图形语言

符号语言

等边对等角

在△ABC中,

因为AB=AC,

所以∠B=∠C.

等腰三角形底边上的高线、中线及角平分线重合

在△ABC中,

因为AB=AC,AD⊥BC,

所以∠BAD=∠CAD,BD=CD.

在△ABC中,

因为AB=AC,∠BAD=∠CAD,

所以AD⊥BC,BD=CD.

在△ABC中,

因为AB=AC,BD=CD,

所以∠BAD=∠CAD,AD⊥BC.

让学生通过思考“你能证明上述定理吗?”“你有不同的证明方法吗?”的问题,不仅使学生思考证明定理,更使学生学会质疑,感受到只要多观察、多思考,就可能获得更多不同解决问题的方法,从而激发起数学探究的欲望和兴趣.

四、操作尝试

按下列作法,用直尺和圆规作等腰三角形ABC,使底边BC=a,高AD=h.

学生动手作图.

作法

图形

1.作线段BC=a.

2.作线段BC的垂直平分线MN,MN交BC于点D.

3.在MN上截取线段DA,使AD=h.

4.连接AB、AC.△ABC就是所求作的等腰三角形.

等腰三角形的性质应用.

五、例题讲解

例1课本P61例1.

思考:

1.图中有几个等腰三角形?

2.可以得到哪些相等的角?

课堂练习:课本P62第3题.

学生独立思考、小组交流.

引导学生把复杂的图形简单化是解决复杂问题的一种方法,再通过观察、思考,找出简单图形中的相等的角,最后的证明,培养学生分析问题和解决问题的能力.

六、课堂小结

本节课你的收获是什么?

共同小结.

师生互动,总结学习成果,体验成功.

七、课后作业

1.课本P66-67第1~5题.

2.(选做题)已知在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.判断AO与BC的位置关系,并说明理由.

课后完成必做题,并根据自己的能力水平确定是否选做思考题.

选做题有一定的难度,学生可根据自己的能力去自主选做.这样就能实现《课程标准》中所要求的“让不同层次的学生得到不同的发展”.

相关阅读

八年级上册《等腰三角形的轴对称性》2导学设计


老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级上册《等腰三角形的轴对称性》2导学设计》,欢迎大家与身边的朋友分享吧!

八年级上册《等腰三角形的轴对称性》2导学设计

2.5等腰三角形的轴对称性(2)

教学目标

1.掌握等腰三角形的判定定理.

2.知道等边三角形的性质以及等边三角形的判定定理.

3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.

4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.

教学重点

熟练地掌握等腰三角形的判定定理.

教学难点

正确熟练地运用定理解决问题及简洁地逻辑推理.

教学过程(教师活动)

学生活动

设计思路

前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.

本节课我们将继续学习等腰三角形的轴对称性.

一、创设情境

如图所示△ABC是等腰三角形,AB=AC,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C.请同学们想一想,有没有办法把原来的等腰三角形ABC重新画出来?大家试试看.

1.学生观察思考,提出猜想.

2.小组交流讨论.

一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题.

二、探索发现一

请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:

(1)在半透明纸上画一条长为6cm的线段BC.

(2)以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的锐角,两角终边的交点为A.

(3)用刻度尺找出BC的中点D,连接AD,然后沿AD对折.

问题1:AB与AC有什么数量关系?

问题2:请用语言叙述你的发现.

1.根据实验要求进行操作.

2.画出图形、观察猜想.

3.小组合作交流、展示学习成果.

演示折叠过程为进一步的说理和推理提供思路.

通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.

三、分析证明

思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?

问题3:已知如图,在△ABC中,

∠B=∠C.求证:AB=AC.

引导学分析问题,综合证明.

思考:你还有不同的证明方法吗?

问题4:“等边对等角”与“等角对等边”,它们有什么区别和联系?

思考——讨论——展示.

1.学生独立完成证明过程的基础上进行小组交流.

2.班级展示:小组代表展示学习成果.

在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.

通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.

四、探索发现二

问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?

问题6:等边三角形有什么性质?

问题7:一个三角形满足什么条件就是等边三角形了?为什么?

1.学生阅读教材,进行自主学习.

2.小组讨论交流.

3.展示学习成果:等边三角形的概念、等边三角形的性质、

等边三角形的判定.

培养学生阅读教材的学习习惯和自主学习能力.

引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径.

五、学以致用

请同学完成课本P63-64练习第1、2、3题.

学生独立思考、小组讨论、展示交流、相互评价.

引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力.

巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力.

六、归纳小结

1.这节课你有怎样的收获?还有哪些困惑呢?

2.布置作业:

课本P67习题2.5第7、8、10题.

1.学生以小组为单位归纳本节课所学习的知识、方法.

2.展示交流,相互补充,建立知识体系.

3.讨论困惑问题.

4.完成作业.

引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力.

等腰三角形1导学案


做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《等腰三角形1导学案》,希望对您的工作和生活有所帮助。

12.3.1等腰三角形(1)
一、学习目标:
1、巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。
2、通过独立思考,交流合作,体会探索数学结论的过程,发展推理能力。
3、激情投入,收获成功。
二、重点难点
学习重点:等腰三角形性质的探索及应用
学习难点:等腰三角形性质的应用
三、合作探究(同学合作,教师引导)
1、复习回顾:○1.三角形全等的判定方法○2.有两条边相等的三角形,叫叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
2、用剪刀按照49页介绍的方法,剪出一个等腰三角形,想一想,它是轴对称图形吗?如果是,它的对称轴是什么?
3、将2中的等腰三角形沿对称轴对折,找出重合的线段和角,由此你发现了等腰三角形的哪些性质?
性质1:等腰三角形的两个底角相等(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
你能证明这两个性质吗?
4、填空:如图1,在△ABC中
○1∵AB=AC,∠BAD=∠CAD∴BD=,⊥。
○2∵AB=AC,BD=CD∴∠BAD=,⊥.
○3∵AB=AC,AD⊥BC∴∠BAD=,BD=.
四、精讲精练
例1、如图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
求△ABC各角的度数。

例2、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为。
例3、如图3,在△ABC中,AB=AC,点D、E在BC上,且AD=AE
.求证:BD=CE

练习:1、如图4,AB=AE,BC=DE,∠B=∠E,AM⊥CD,垂足为点M
求证:CM=DM
2、等腰三角形一腰上的高和另一腰的夹角为40o,则底角为。
3、如图5,在△ABC中,AB=AC,∠A=30o,BF=CE,BD=CF,
求∠DFE的度数。

五、课堂小结:腰三角形的哪些性质?
性质1:等腰三角形的两个底角相等(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
六、作业:P511、3

文章来源:http://m.jab88.com/j/56724.html

更多

最新更新

更多