老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级上册《等腰三角形的轴对称性》2导学设计》,欢迎大家与身边的朋友分享吧!
八年级上册《等腰三角形的轴对称性》2导学设计
2.5等腰三角形的轴对称性(2)
教学目标
1.掌握等腰三角形的判定定理.
2.知道等边三角形的性质以及等边三角形的判定定理.
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.
教学重点
熟练地掌握等腰三角形的判定定理.
教学难点
正确熟练地运用定理解决问题及简洁地逻辑推理.
教学过程(教师活动)
学生活动
设计思路
前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.
本节课我们将继续学习等腰三角形的轴对称性.
一、创设情境
如图所示△ABC是等腰三角形,AB=AC,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C.请同学们想一想,有没有办法把原来的等腰三角形ABC重新画出来?大家试试看.
1.学生观察思考,提出猜想.
2.小组交流讨论.
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题.
二、探索发现一
请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
(1)在半透明纸上画一条长为6cm的线段BC.
(2)以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的锐角,两角终边的交点为A.
(3)用刻度尺找出BC的中点D,连接AD,然后沿AD对折.
问题1:AB与AC有什么数量关系?
问题2:请用语言叙述你的发现.
1.根据实验要求进行操作.
2.画出图形、观察猜想.
3.小组合作交流、展示学习成果.
演示折叠过程为进一步的说理和推理提供思路.
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.
三、分析证明
思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?
问题3:已知如图,在△ABC中,
∠B=∠C.求证:AB=AC.
引导学分析问题,综合证明.
思考:你还有不同的证明方法吗?
问题4:“等边对等角”与“等角对等边”,它们有什么区别和联系?
思考——讨论——展示.
1.学生独立完成证明过程的基础上进行小组交流.
2.班级展示:小组代表展示学习成果.
在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.
通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.
四、探索发现二
问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?
问题6:等边三角形有什么性质?
问题7:一个三角形满足什么条件就是等边三角形了?为什么?
1.学生阅读教材,进行自主学习.
2.小组讨论交流.
3.展示学习成果:等边三角形的概念、等边三角形的性质、
等边三角形的判定.
培养学生阅读教材的学习习惯和自主学习能力.
引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径.
五、学以致用
请同学完成课本P63-64练习第1、2、3题.
学生独立思考、小组讨论、展示交流、相互评价.
引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力.
巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力.
六、归纳小结
1.这节课你有怎样的收获?还有哪些困惑呢?
2.布置作业:
课本P67习题2.5第7、8、10题.
1.学生以小组为单位归纳本节课所学习的知识、方法.
2.展示交流,相互补充,建立知识体系.
3.讨论困惑问题.
4.完成作业.
引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力.
做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《等腰三角形1导学案》,希望对您的工作和生活有所帮助。
12.3.1等腰三角形(1)
一、学习目标:
1、巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。
2、通过独立思考,交流合作,体会探索数学结论的过程,发展推理能力。
3、激情投入,收获成功。
二、重点难点
学习重点:等腰三角形性质的探索及应用
学习难点:等腰三角形性质的应用
三、合作探究(同学合作,教师引导)
1、复习回顾:○1.三角形全等的判定方法○2.有两条边相等的三角形,叫叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
2、用剪刀按照49页介绍的方法,剪出一个等腰三角形,想一想,它是轴对称图形吗?如果是,它的对称轴是什么?
3、将2中的等腰三角形沿对称轴对折,找出重合的线段和角,由此你发现了等腰三角形的哪些性质?
性质1:等腰三角形的两个底角相等(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
你能证明这两个性质吗?
4、填空:如图1,在△ABC中
○1∵AB=AC,∠BAD=∠CAD∴BD=,⊥。
○2∵AB=AC,BD=CD∴∠BAD=,⊥.
○3∵AB=AC,AD⊥BC∴∠BAD=,BD=.
四、精讲精练
例1、如图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
求△ABC各角的度数。
例2、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为。
例3、如图3,在△ABC中,AB=AC,点D、E在BC上,且AD=AE
.求证:BD=CE
练习:1、如图4,AB=AE,BC=DE,∠B=∠E,AM⊥CD,垂足为点M
求证:CM=DM
2、等腰三角形一腰上的高和另一腰的夹角为40o,则底角为。
3、如图5,在△ABC中,AB=AC,∠A=30o,BF=CE,BD=CF,
求∠DFE的度数。
五、课堂小结:腰三角形的哪些性质?
性质1:等腰三角形的两个底角相等(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
六、作业:P511、3
文章来源:http://m.jab88.com/j/56724.html
更多