88教案网

第13章《三角形的边角关系、命题与证明》期末总复习资料

每个老师上课需要准备的东西是教案课件,到写教案课件的时候了。需要我们认真规划教案课件工作计划,可以更好完成工作任务!你们知道多少范文适合教案课件?下面是小编为大家整理的“第13章《三角形的边角关系、命题与证明》期末总复习资料”,仅供您在工作和学习中参考。

第13章《三角形的边角关系、命题与证明》期末总复习资料

本章需要理解掌握的知识点有:
一、三角形的概念(要注意“不在同一直线上”)
二、三角形边的关系
1、按边分类:不等边三角形;
等腰三角形(包括等边三角形)
2、特殊三角形:等腰三角形,腰、底边;顶角、底角。
3、三边之间关系:三角形任何两边之和大于第三边
三角形任何两边之差小于第三边
4、三边关系应用:已知两边求第三边取值范围(第三边小于两边之和、大于两边之差的绝对值);
已知三条线段的长,判断能否构成三角形
(只要看“两条较小线段的长度和是否大于最长线段)
证明线段不等关系
(只要是证明线段不等关系的题目,都要考虑用”三角形两边之和大于第三边“来证,那么。首先要出现三角形,然后在三角形中来证明)
三、三角形角之间关系
1、按角分类:直角三角形;
斜三角形(包括锐角三角形和钝角三角形)
2、特殊三角形:直角三角形,直角边、斜边。
3、三角之间关系:三角形内角和是180度
4、三角关系应用:求角度
证明角的不等关系
四、三角形中重要线段
1、三角形的角平分线(1、三角形的角平分线是线段,2、角平分线的交点叫三角形的内心)
2、三角形的中线(1、中线把三角形分成了两个面积相等的三角形,2、中线的交点叫重心,3、遇到中线的问题如果难以解决,则加倍延长中线)
3、三角形的高(1、高并不一定在内部,2、把握高的定义是作三角形高的基础,3、高的交点叫垂心,4、牵扯到高的题目通常用面积相等来解决)
探究几何图形的性质可以通过观察、操作和实验的方法。但这些方法得到的结论有时候是近似的、甚至是错误的。要想结论使人信服就要用到推理、推理就需要思维、思维就需要作出判断,判断的语句就是命题。
五、命题
1、命题的定义
2、真、假命题
3、命题的构成
4、命题的形式
5、互逆命题
六、证明一个命题是假命题的方法:举反例(例子要“符合命题的题设,但不符合命题的结论”)
七、证明一个命题是真命题要用推理的方法。
八、命题的证明
1、把命题改写成“如果P,那么q”的形式,找出题设和结论,P就是题设、q就是结论
2、画出符合题意的图形,并标明字母
3、结合图形写出已知、和求证:在已知中写题设;在求证中写结论
4、分析证明思路(执果索因)
5、写出证明过程:每一步都要有依据。

扩展阅读

第15章《轴对称图形和等腰三角形》期末总复习资料


为了促进学生掌握上课知识点,老师需要提前准备教案,大家应该在准备教案课件了。用心制定好教案课件的工作计划,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?为满足您的需求,小编特地编辑了“第15章《轴对称图形和等腰三角形》期末总复习资料”,供大家借鉴和使用,希望大家分享!

第15章《轴对称图形和等腰三角形》期末总复习资料

本章需要理解掌握的知识点有:
一、轴对称图形和轴对称
1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。
2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够完全重合。
3、对称轴都是直线
4、联系:
如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称
如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。
二、轴对称的性质
如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线
三、轴对称的判定
如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。
(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)
四、线段垂直平分线
1、性质:线段垂直平分线上的点到线段两端点的距离相等(证线段相等的依据)
2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)
3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。
4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等
五、坐标系中的对称
点P(a,b)关于x轴对称点的坐标为(a,-b)
点P(a,b)关于y轴对称点的坐标为(-a,b)
六、等腰三角形
(一)等腰三角形性质
性质1、等腰三角形两底角相等(等边对等角)
在一个三角形证明角相等的重要依据。
性质2、等腰三角形顶角平分线垂直平分底边
也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。
(二)等腰三角形判定:
1、定理:等角对等边
2、推论1、三个角都相等的三角形是等边三角形
3、推论2、有一个角是60度的等腰三角形是等边三角形
4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。
七、角的平分线
1、性质:角平分线上的点到角两边的距离相等
2、判定:角的内部到角两边距离相等的点在角的平分线上。
3、三角形三个内角平分线交于一点(内心),该点到三角形三边的距离相等。
4、在题目中只要遇到角平分线,就要想着把角平分线上的点向角的两边作垂线段。就能得到线段相等。

三角形内角和定理的证明


§6.5三角形内角和定理的证明
教学目标
(一)知识认知要求
三角形的内角和定理的证明.
(二)能力训练要求
掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.
(三)情感与价值观要求
通过新颖、有趣的实际问题,来激发学生的求知欲.
教学重点
三角形内角和定理的证明.
教学难点
三角形内角和定理的证明方法.
教学过程
一、巧设现实情境,引入新课
大家来看一机器零件(投影)
为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢?
二、讲授新课
为了回答这个问题,先观察如下的实验(电脑实验)
用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点,放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?
当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.
三角形各内角的大小在变化过程中是相互影响的.
在三角形中,最大的内角有没有等于或大于180°的?
三角形的最大内角不会大于或等于180°.
看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.
猜一猜:三角形的内角和可能是多少?
这一猜测是否准确呢?我们曾做过如下
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,
使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.
(1)(2)(3)(4)
实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起.
由实验可知:我们猜对了!三角形的内角之和正好为一个平角.
但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.
这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.
这时,∠A与∠ACE能重合吗?
这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.
已知,如图,△ABC.求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥AB.则
∠ACE=∠A(两直线平行,内错角相等)
∠ECD=∠B(两直线平行,同位角相等)
∵∠ACB+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
即:∠A+∠B+∠C=180°.
通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.
在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图)他的想法可行吗?你有没有其他的证法.
小明的想法可行.因为:∵PQ∥BC(已作)
∴∠PAB=∠B(两直线平行,内错角相等)
∠QAC=∠C(两直线平行,内错角相等)
∵∠PAB+∠BAC+∠QAC=180°
∴∠B+∠BAC+∠C=180°(等量代换)
也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C
也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.
即:如图,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC交AB于F.
∴四边形AFDE是平行四边形(平行四边形的定义)
∠BDF=∠C(两直线平行,同位角相等)
∠EDC=∠B(两直线平行,同位角相等)
∴∠EDF=∠A(平行四边形的对角相等)
∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)
∴∠A+∠B+∠C=180°(等量代换)
三、课堂练习
四.课时小结
这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.
五、作业习题6.6
六、活动与探究
1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图(1)),如果把这三个角“凑”到三角形内一点呢?(如图(2))“凑”到三角形外一点呢?(如图(3)),你还能想出其他证法吗?
(1)(2)(3)
让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.
[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.证明略.
五、作业
教学反思:要培养学生形成流畅的思维方式、变通的思维模式和独创的思维特性,必须在情感领域对学生多加以启迪和引导,充分调动、运用和激励学生的好奇心、冒险心、挑战心和想象力。

三角形的三边关系


9.1三角形
第5课时三角形的三边关系
教学目的
1.让学生通过作三角形(已知三条线段)的过程中,发现“三角形任何两边之和大于第三边”.并会利用这个不等量关系判断不知的三条线段能否组成三角形以及已知三角形的二边会求第三边的取值范围.
2.会利用三角形的稳定性解决一些实际问题.
重点、难点
1.重点;三角形任何两边之和大于第三边的应用.
2难点:已知三角形的两边求第三边的范围.
教学过程
一、复习提问
1.三角形的三个内角和是多少?三角形的外角有什么性质?
2.在连结两点的所有线中最短的是哪一种?
二、新授
我们已探索了三角形的三个内角、外角以及外角与内角之间的数量关系,今天我们要探索三角形的三边之间的不等量关系.
1.让学生拿出预先准备好的四根牙签(2cm,3cm,5cm,6cm各一根),请你用其中的三根,首尾连接,摆成三角形,是不是任意三根都能摆出三角形?若不是,哪些可以,哪些不可以?你从中发现了什么?
从4根中取出3根有以下几种情况:
(1)2cm,5cm,6cm(2)3cm,5cm,6cm
(3)2cm,3cm,5cm(4)2cm,3cm,6cm
经过实践可知(1).(2)可以摆出三角形,(3)、(4)不能摆成三角形.我们可以发现在这三根牙签中.如果较小的两根的和不大于最长的第三根,就不能组成三角形.
这就是说:三角形的任何两边的和大于第三边.
2.下面我们再通过用圆规、直尺画三角形来验证
画一个三角形;使它的三条边分别为7cm、5cm、4cm.
画法步骤如下:
(1)先画线段AB=7cm
(2)以点A为圆心,4cm长为半径画圆弧,
(3)再以B为圆心,4cm长为半径画圆弧,两弧相交于点C;
(4)连接AC、BC.
△ABC就是所要画的三角形.
这是根据圆上任意一点到圆心的距离相等.
试一试:
能否画一个三角形,使它的三边分别为
(1)7cm,4cm,2cm
(2)9cm,5cm,4cm
大家在画图过程中,发现两条弧不会相交,这就是说不能作出三角形.
你能否利用前面说过的线段的基本性质来说明这一结论的正确性?
例1.有两根长度分别为5cm和8cm的木棒,现在再取一根木棒与它们摆成一个三角形,你说第三根要多长呢?用长度为3cm的木棒行吗?为什么?长度为14cm的木棒呢?
3.三角形的稳定性.
教师演示简易的教具——用木条钉成的三角形和四边形,用力一拉四边形变形了,而三角形却一点不变.
这就是说三角形的三条边固定,那么三角形的形状和大小就完全确定了.三角形的这个性质叫做三角形的稳定性.四边形就不具有这个性质.
三角形的稳定性在生产、生活实践中有着广泛的应用;如桥拉杆、电视塔架底座,都是三角形结构(如教科书、图9.1.13)
你能举出三角形的稳定牲在生产、生活中应用的例子吗?
三、巩固练习教科书第66页练习1、2、3.
四、小结
本节课我们研究、探索了三角形中边的不等量关系,三角形任何两边的和大于第三边.注意“任何”两宇,如三角形的三边分别为a、b、c,则a+bc,a+cb,b+ca都成立才可以,但如果确定了最长的一条线段,只要其余两条线段之和大于最长的一条,它们必定可以构成三角角形.如果已有两条线段,要确定第三条应该是什么样的长度才能使它们构成三角形?第三边的取值范围是大于这两边的差而小于这两边的和.
五、作业
教科书第67页,习题9.1第1、4题.

文章来源:http://m.jab88.com/j/56717.html

更多

最新更新

更多