一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?为满足您的需求,小编特地编辑了“常量和变量”,供大家参考,希望能帮助到有需要的朋友。
常量和变量〖教学目标〗◆1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
◆2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
◆3、会在简单的过程中辨别常量和变量。
〖教学重点与难点〗
◆教学重点:常量和变量的概念。
◆教学难点:本节范例由于学生对宇航中的一些量不熟悉,而且涉及一定的物理知识,是本节教学的难点。
〖教学过程〗一、引言:一辆长途客车从杭州驶向上海,全程哪些量不变?哪些量在变?当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温;某段河道一天中时刻变化着的水位……在某一个过程中,有些量固定不变,有些量不断改变。二、合作交流,探求新知:
1、请讨论下面的问题:
(1)圆的周长公式为,请取的一些不同的值,算出相应的的值:
cmcmcmcmcmcmcmcm……在计算半径不同的圆的面积的过程中,哪些量在改变,哪些量不变?
(2)假设钟点工的工资标准为6元/时,设工作时数为t,应得工资额为m,则
=6
取一些不同的的值,求出相应的的值:
cmcmcmcm……在根据不同的工作时数计算钟点工应得工资额的过程中,哪些量在改变?哪些量不变?
设问:一个量变化,具体地说是它的什么在变?什么不变呢?
引导学生观察发现:是量的数值变与不变。
2、变量与常量的概念形成:在一个过程中,固定不变的量称为常量,如上面两题中,圆周率和钟点工的工资标准6元/时。可以取不同数值的量称为变量,如上面两题中,半径和圆面积s,工作时数t和工资额都是变量。又如购买同一种商品时,商品的单价就是常量,购买商品数量和相应的总价就是变量;某段河道一天中各时刻变化着的水位也是变量。
注意:常量与变量必须存在与一个变化过程中。判断一个量是常量还是变量,需这两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况。
3、巩固概念:
(1)向平静的湖面投一石子,便会形成以落水点为圆心的一系列同心圆,①在这个变化过程中有哪些是变量?②若面积用,半径用表示,则和的关系是什么?是常量还是变量?③若周长用C,半径用表示,则C和的关系是什么?(2)在行程问题中,当汽车在匀速行驶的过程中,速度、行驶的时间和路程哪些是常量,哪些是变量?若一辆汽车从甲地向乙地行驶,所需的时间、行驶速度和路程哪些是常量,哪些又是变量?常量与变量不是绝对的,而是对于一个变化过程而言的。
三、例题讲解:
出示例题(见书本第151页)
分析:在这6分时间内,火星车运动的时间是变量;火星车在空气阻力的作用下,速度不断减小,速度是变量。火星车与火星越来越接近,火星车所受火星的引力越来越大,也是变量。火星着陆前6分时的位置和着陆点都是空间中确定的两个位置,两者之间的距离是一个确定的量,所以是一个常量。
最后完成例题中的“想一想”(先请学生单独考虑,再作讲解)
四、练习巩固:课内练习1、2、五、小结回顾,反思提高1、常量和变量的概念。2、常量与变量必须存在与一个变化过程中。3、常量与变量不是绝对的,而是对于一个变化过程而言的。六、作业:作业本
每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“变量与函数(1)导学案”,相信能对大家有所帮助。
班级姓名科目数学使用
时间
课题19.1.1变量与函数(1)
重难点学习重点:了解常量与变量的意义;
学习难点:较复杂问题中常量与变量的识别。
【自主复习知识准备】
问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1、请同学们根据题意填写下表:
t/时12345t
s/千米
2、在以上这个过程中,变化的量是_____________.不变化的量是__________.
3、试用含t的式子表示s,s=________,t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
【自主探究知识应用】
问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.
1、请同学们根据题意填写下表:
售出票数(张)早场150午场206晚场310x
收入y(元)
2、在以上这个过程中,变化的量是_____________.不变化的量是__________.
3、试用含x的式子表示y,y=______,x的取值范围是.
这个问题反映了票房收入_________随售票张数_________的变化过程.
问题三:当圆的半径r分别是10cm,20cm,30cm时,圆的面积S分别是多少?
1、请同学们根据题意填写下表:(用含的式子表示)
半径r10cm20cm30cm
面积S
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含S的式子表示r,S=___,r的取值范围是.这个问题反映了____随____的变化过程.
问题四:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2.
1、请同学们根据题意填写下表:
长x(m)4.543.53x
另一边长(m)
面积s(m2)
2、在以上这个过程中,变化的量是_____________.不变化的量是__________.
3、试用含x的式子表示s.S=__________________,x的取值范围是.
这个问题反映了矩形的____随___的变化过程.
小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
得出结论:在一个变化过程中,我们称数值发生变化的量为________;在一个变化过程中,我们称数值始终不变的量为________;
巩固与拓展:
例1、一支圆珠笔的单价为2元,设圆珠笔的数量为x支,总价为y元。则y=;在这个式子中,变量是,常量是。
例2、某种报纸的价格是每份0.4元,买x份报纸的总价为y元。用含x的式子表示y,y=,常量是,变量是。
【当堂检测知识升华】
1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()
A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+50
2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()
A.S是变量B.t是变量C.v是变量D.S是常量
3.在一个变化过程中,__________________的量是变量,________________的量是常量.
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.
份数/份1234567100
价钱/元
x与y之间的关系是y=______,在这个变化过程中,常量___________,变量是___________.
5.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为y=_______,则这个问题中,___________常量;_________是变量.
6.写出下列问题中的关系式,并指出其中的变量和常量.
(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.
(2)直角三角形中一个锐角α与另一个锐角β之间的关系.
(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)
【课后作业知识反馈】
课本P81第1题。
我的收获
(想和老师说)
纠错台
老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“变量与函数(2)导学案”,仅供参考,希望能为您提供参考!
班级姓名科目使用
时间
课题19.1.1变量与函数(2)
重难点学习重点:函数的概念及确定自变量的取值范围。
学习难点:认识函数,领会函数的意义。
【自主复习知识准备】
请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。
【自主探究知识应用】
请看书72——74页内容,完成下列问题:
1、思考书中第72页的问题,归纳出变量之间的关系。
2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
补充小结:
(1)函数的定义:
(2)必须是一个变化过程;
(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。
三、巩固与拓展:
例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200千米时,油箱中还有多少汽油?
【当堂检测知识升华】
1、判断下列变量之间是不是函数关系:
(1)长方形的宽一定时,其长与面积;
(2)等腰三角形的底边长与面积;
(3)某人的年龄与身高;
2、写出下列函数的解析式.
(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.
(2)汽车加油时,加油枪的流量为10L/min.
①如果加油前,油箱里还有5L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;
②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.
(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.
【课后作业知识反馈】
1、P74---75页:1,2题
我的收获
(想和老师说)
纠错台
文章来源:http://m.jab88.com/j/57143.html
更多