一、内容和内容解析
1.内容
二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析
二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.
二、目标和目标解析
1.教学目标
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3)理解最简二次根式的概念.
2.目标解析
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.
三、教学问题诊断分析
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.
四、教学过程设计
1.复习提问,探究规律
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.
2.观察思考,理解法则
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:
.
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误.
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即.利用该性质可以进行二次根式的化简.
3.例题示范,学会应用
例1计算:(1);(2);(3).
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?
【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,
问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式.
问题6课件展示一组二次根式的计算、化简题.
【设计意图】让学生用总结出的结论进行二次根式的运算.
4.巩固概念,学以致用
例2教材第9页例7.
师生活动提问本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)除法运算的法则如何?对等式中字母的取值范围有何要求?
(2)你能说明最简二次根式需要满足的条件吗?
6.布置作业:教科书第10页练习第1,2,3题;
教科书习题16.2第10,11题.
五、目标检测设计
1.在、、中,最简二次根式为.
【设计意图】考查对最简二次根式的概念的理解.
2.化简下列各式为最简二次根式:;.
【设计意图】复习二次根式的运算法则和运算性质.鼓励学生用不同方法进行计算.对于分母含二次根式的处理,要结合整式的乘法公式进行计算.
3.化简:(1);(2).
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.
16.1二次根式
教学内容
二次根式的概念及其运用
教学目标
知识与技能目标:理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT课件,展台。
课时安排:1课时。
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
二、探索新知
很明显、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a0,有意义吗?
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
四、归纳小结
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
五、布置作业
一、选择题1.下列式子中,是二次根式的是()
A.-B.C.D.x
2.下列式子中,不是二次根式的是()
A.B.C.D.
3.已知一个正方形的面积是5,那么它的边长是()
A.5B.C.D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有()个.
A.0B.1C.2D.无数
5.已知a、b为实数,且+2=b+4,求a、b的值.
答案:
一、1.A2.D3.B二、1.(a≥0)2.3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=.2.依题意得:,
∴当x-且x≠0时,+x2在实数范围内没有意义.
3.4.B5.a=5,b=-4
板书设计:
§16.1.1.二次根式(1)
情境引入例2学生板演
二次根式的定义例3
例1例4小结
16.1二次根式(2)
教学内容
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
教学目标
知识与技能目标:理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
过程与方法目标:过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
教学重难点关键
1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).
教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读、类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:1、类比的方法通过观察、类比,使学生理解(a≥0)是一个非负数和()2=a(a≥0),形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT课件,展台。
课时安排:1课时。
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a0时,有意义吗?
老师点评(略).
二、探究新知
议一议:(a≥0)是一个什么数呢?
老师点评:
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1、计算
1.()22.(3)23.()24.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2=,(3)2=32()2=325=45,
()2=,()2=.
三、巩固练习
计算下列各式的值:
()2()2()2()2(4)2
四、应用拓展
例2、计算
1.()2(x≥0)2.()23.()2
4.()2
分析:(1)因为x≥0,所以x+10;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+10
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-22x3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3、在实数范围内分解下列因式:
(1)x2-3(2)x4-4(3)2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1.(a≥0)是一个非负数;
2.()2=a(a≥0);反之:a=()2(a≥0).
六、布置作业
一、选择题
1.下列各式中、、、、、,二次根式的个数是().
A.4B.3C.2D.1
2.数a没有算术平方根,则a的取值范围是().
A.a0B.a≥0C.a0D.a=0
二、填空题
1.(-)2=________.
2.已知有意义,那么是一个_______数.
三、综合提高题
1.计算
(1)()2(2)-()2(3)()2(4)(-3)2
(5)
2.把下列非负数写成一个数的平方的形式:
(1)5(2)3.4(3)(4)x(x≥0)
3.已知+=0,求xy的值.
4.在实数范围内分解下列因式:
(1)x2-2(2)x4-93x2-5
答案:一、1.B2.C;二、1.32.非负数;三、1.(1)()2=9(2)-()2=-3(3)()2=×6=;(4)(-3)2=9×=6(5)-6
2.(1)5=()2;(2)3.4=()2;(3)=()2;(4)x=()2(x≥0)
3.xy=34=81;4.(1)x2-2=(x+)(x-)
(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-);(3)略
板书设计:
§16.1.二次根式(2)
情境引入例1学生板演
1.(a≥0)是一个非负数;例2
2.()2=a(a≥0);
反之:a=()2(a≥0).例3小结
16.1二次根式(3)
教学内容:=a(a≥0)
教学目标
知识与技能目标:理解=a(a≥0)并利用它进行计算和化简.
过程与方法目标:通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
教学重难点关键
1.重点:=a(a≥0).
2.难点:探究结论.
3.关键:讲清a≥0时,=a才成立.
教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式
学法:1、类比的方法通过观察、类比,使学生感悟=a(a≥0),形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT课件,展台。
课时安排:1课时。
教学过程:一、复习引入
1.形如(a≥0)的式子叫做二次根式;
2.(a≥0)是一个非负数;
3.()2=a(a≥0).
那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题.
二、探究新知
填空:
=_______;=_______;=______;
=________;=________;=_______.
(老师点评):根据算术平方根的意义,我们可以得到:
=2;=0.01;=;=;=0;=.
因此,一般地:=a(a≥0)
例1、化简
(1)(2)(3)(4)
分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,
(4)(-3)2=32,所以都可运用=a(a≥0)去化简.
解:(1)==3(2)==4
(3)==5(4)==3
三、应用拓展
例2、填空:当a≥0时,=_____;当a0时,=_______,并根据这一性质回答下列问题.
(1)若=a,则a可以是什么数?
(2)若=-a,则a可以是什么数?
(3)a,则a可以是什么数?
分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,=,那么-a≥0.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a0.
解:(1)因为=a,所以a≥0;
(2)因为=-a,所以a≤0;
(3)因为当a≥0时=a,要使a,即使aa所以a不存在;当a0时,=-a,要使a,即使-aa,a0综上,a0
例3、当x2,化简-.
分析:(略)
四、归纳小结
本节课应掌握:=a(a≥0)及其运用,同时理解当a0时,=-a的应用拓展.
五、布置作业
一、选择题
1.的值是().
A.0B.C.4D.以上都不对
2.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是().
A.=≥-B.-
C.-D.-=
二、填空题
1.-=________.
2.若是一个正整数,则正整数m的最小值是________.
三、综合提高题
1.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:
甲的解答为:原式=a+=a+(1-a)=1;
乙的解答为:原式=a+=a+(a-1)=2a-1=17.
两种解答中,_______的解答是错误的,错误的原因是__________.
2.若│1995-a│+=a,求a-19952的值.
(提示:先由a-2000≥0,判断1995-a的值是正数还是负数,去掉绝对值)
3.若-3≤x≤2时,试化简│x-2│++。
答案:一、1.C2.A;二、1.-0.022.5;三、1.甲甲没有先判定1-a是正数还是负数
2.由已知得a-2000≥0,a≥2000
所以a-1995+=a,=1995,a-2000=19952,
所以a-19952=2000.
3.10-x
板书设计:
§16.1.二次根式(3)
情境引入例2学生板演
=a(a≥0).例3
例1练习小结
八年级数学下册《二次根式》学案
一、学习目标:理解二次根式的概念,并利用(a≥0)的意义解答具体题
二、先学后教,合作探究
阅读课本第2页,并完成以下问题:
1、平方根的性质:正数有个平方根,它们;0的平方根是;
负数平方根。
2、用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为5的正方形的边长为;
(2)要修建一个面积为3的圆形喷水池,它的半径为m;
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t=。
(4)6的算术平方根的相反数为;
3、在上面的问题中,结果分别是,它们都表示一些正数的算术平方根。
4、一般地,我们把形如的式子叫做二次根式,
“”称为二次根号.
注:开平方时,被开方数a的取值范围(为什么?)
5、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
,,,,,
例1.当x是多少时,在实数范围内有意义?
三、自学反馈
1、当a是怎样的实数时,下列各式在实数范围内有意义?
________________
________________
2、若+有意义,求x值.
四、当堂检测
1、下列式子,哪些是二次根式,哪些不是二次根式:
、、、(x0)、、-、、
是二次根式的有:
不是二次根式的有:
2、当x是多少时,在实数范围内有意义?
16.1二次根式(第2课时)
一、学习目标
1、理解(a≥0)是一个非负数
2、理解二次根式的两个性质()2=a(a≥0)和=a(a≥0)。
3、会运用上述两个性质进行有关计算和化简。
二、先学后教,合作探究
阅读课本第3页—4页,并完成以下问题:
探究(—)当a0时,表示a的算数平方根,因此0;
当a=0时,表示0的算数平方根,因此0.
概括:一般地,
文章来源:http://m.jab88.com/j/56971.html
更多