《角平分线的性质》期末复习知识点青岛版
知识点
角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
角平分线的性质:
1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的距离相等。
3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
涉及到的知识点:
熟练掌握用尺规作图法作角平分线的要领,并会应用角平分线的定义、性质解决相关问题。
课后练习
1.三角形中,到三边距离相等的点是()
A.三条高线交点B.三条中线交点
C.三条角平分线的交点D.三边的垂直平分线的交点
答案:C
试题分析:根据角平分线的性质,角的内部到角两边的距离相等的点在角平分线上可知,到角两边距离相等的点只可能在角平分线上,所以三条角平分线的交点到三边距离相等。故选C.
2.已知P点在∠AOB的平分线上,∠AOB=60°,OP=10cm,那么P点到边OA、OB的距离分别是()
A.5cm、cmB.4cm、5cm
C.5cm、5cmD.5cm、10cm
答案:C
试题分析:
∵点P在∠AOB的平分线上,∠AOB=60°,
∴∠AOP=∠BOP=30°,
∵PC⊥OA,PD⊥OB,OP=10cm,
∴PC=PD=1/2OP=5cm.
延伸阅读
角的平分线的性质
每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“角的平分线的性质”,仅供参考,欢迎大家阅读。
12.3角的平分线的性质
1.角的平分线的性质
(1)内容
角的平分线上的点到角的两边的距离相等.
(2)书写格式
如图所示,
∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,
∴PD=PE.
谈重点角平分线的性质的理解和应用
(1)使用角的平分线的性质有两个条件:①点在角的平分线上;②过这一点作角的两边的垂线段.结论是:这点到角的两边的距离相等,即两条垂线段相等.
(2)角的平分线的性质是证明两线段相等的方法之一,而且不用再证明两个三角形全等.
(3)如果已知一个点在角的平分线上,常作出该点到角两边的垂线段,运用性质得到两线段相等.
【例1】如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若CD=2cm,则点D到直线AB的距离是__________cm.
解析:因为点D在∠ABC的角平分线上,所以点D到直线AB的距离等于点D到直线BC的距离,即点D到直线AB的距离等于CD的长.
答案:2
2.角的平分线的判定
(1)内容
角的内部到角的两边的距离相等的点在角的平分线上.
(2)书写格式
如图所示,
∵PD⊥OA,PE⊥OB,PD=PE,
∴点P在∠AOB的角平分线上.
(3)作用
运用角的平分线的判定,可以证明两个角相等和一条射线是角的平分线.
警误区角的平分线的性质和判定适用的条件在运用角的平分线的性质和判定时,往往错误地将一线段当作“距离”,主要原因是不能正确理解角平分线的性质和判定,因此在运用角的平分线的性质和判定时,一定要注意“距离”必须有垂直的条件.
【例2】如图所示,BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE交于点D,求证:AD平分∠BAC.
证明:∵BF⊥AC,AB⊥CE,
∴∠DEB=∠DFC=90°.
在△BDE和△CDF中,
∵∠DEB=∠DFC,∠BDE=∠CDF,BE=CF,
∴△BDE≌△CDF(AAS).
∴DE=DF.
又∵BF⊥AC,AB⊥CE,
∴AD平分∠BAC(角的内部到角的两边距离相等的点在角的平分线上).
3.运用角的平分线的性质解决实际问题
运用角的平分线的性质的前提条件是已知角的平分线以及角平分线上的点到角两边的距离.
在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.
运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.
4.运用角的平分线的判定解决实际问题
在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据已知某点到角两边的距离相等,则常常联想到用角的平分线的判定得到角的平分线来解决问题.
解技巧巧用角的平分线的性质和判定解决问题能根据已知条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是已知条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.
5.综合运用角的平分线的性质和判定解决实际问题
角的平分线的性质和判定的关系如下:
对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质”和“判定”恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.
析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.
【例3】如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是3000m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100000)
解:如图.
作法:(1)以点C为圆心,以任意长为半径画弧,交两河岸于A,B两点,分别以A,B为圆心,以大于12AB长为半径画弧,两弧交于点O,过C,O作射线CO.
(2)按比例尺计算得古塔与P的图上距离为3cm,以古塔为圆心,以3cm长为半径画弧交CO于点P,则点P即为所求.
【例4】如图所示,有一名民警在值班,他位于到平行的大街两侧以及过街天桥AB的距离相等的点P处.此时,这位民警发现有一可疑分子从天桥A处走向B处,请问民警在注视可疑分子从A处走到B处时,他的视线转过了多大角度?
解:连接PA,PB.
∵点P到BE,AF,AB的距离相等,
∴PA,PB分别是∠FAB,∠EBA的角平分线,即∠PBA=12∠EBA,∠PAB=12∠FAB.
∵BE∥AF,∴∠EBA+∠FAB=180°.
∴∠PBA+∠PAB=12(∠EBA+∠FAB)=90°.
∴∠APB=180°-(∠PBA+∠PAB)=180°-90°=90°,即民警的视线转过的角度为90°.
【例5】如图,AP,CP分别是△ABC的外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP为∠MBN的平分线.
分析:要证BP为∠MBN的平分线,只需证PD=PF,而AP,CP为外角平分线,故可过点P作PE⊥AC于点E,根据角平分线的性质有PD=PE,PF=PE,所以PF=PD.因此BP为∠MBN的平分线.
证明:过点P作PE⊥AC于点E.
∵AP,CP分别是∠MAC与∠NCA的平分线,PD⊥BM于点D,PF⊥BN于点F,
∴PD=PE,PF=PE(角平分线上的点到角两边的距离相等).∴PD=PF.
又∵PD⊥BM于点D,PF⊥BN于点F,
∴点P在∠MBN的平分线上(角的内部到角的两边的距离相等的点在这个角的平分线上).
∴BP为∠MBN的平分线.
6.运用角的平分线的性质和判定解决探究型问题
在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上”的应用是寻找角的平分线的一种比较简单的方法.
三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.
三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.
三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.
【例6】如下图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?
解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.
作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.
(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.
初二数学上册知识点:角平分线的性质
初二数学上册知识点:角平分线的性质
角平分线的性质是在全等三角形中重点的章节,角平分线的性质在几何题型中出现的较多,以下是角平分线的性质的知识点,供大家参考。
角平分线的性质
一、本节学习指导
角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。
二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
如下图:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】
如第一个图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。
如第一个图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。
∵C是AB的中点
∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。
如图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC=∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的
一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。
6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
∵△ABC≌△ABC
∴AB=AB,BC=BC,AC=AC;∠A=∠A,∠B=∠B,∠C=∠C
角的平分线的性质学案
1、通过探究理解角平分线的性质并会运用
2、掌握尺规作图作角平分线
1、怎样用尺规作角的平分线?
2、角的平分线上的点到角的两边的距离有什么关系?
(一)课前巩固
1、如图,AB=AD,BC=DC,求证AC是∠DAB的平分线
(二)自学:教材P19
(三)用尺规作一个角的平分线
1、已知:∠AOB,2、练习,画出下列角的平分线
求作:∠AOB的平分线OC
3、练习,教材P19
角平分线的性质
1、探究,教材P20
2、归纳,角平分线的性质是:角平分线上的到角两边的相等。
3、用三角形全等证明性质,
如图,已知:∠BAF=∠CAF,点O在AF上,OE⊥AB,OD⊥AC,垂足分别为E,D.求证:OE=OD
证明:F
符号语言:
△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F,求证EB=FC
如图,△ABC的∠B的外角平分线BD与∠C的外角的平分组CE相交于P,求证点P到三边AB,BC,CA所在直线的距离相等。
文章来源://m.jab88.com/j/56961.html
更多猜你喜欢
更多-
角的平分线的性质 每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“角的平分线的性质”,仅供参考,欢迎大家阅读。12.3角的平分线的性质1.角的平分线的性质内容角的平分线上的点到角的两边... - 初二数学上册知识点:角平分线的性质 初二数学上册知识点:角平分线的性质 角平分线的性质是在全等三角形中重点的章节,角平分线的性质在几何题型中出现的较多,以下是角平分线的性质的知识点,供大家参考。 角平分线的性质 一、本节学习指导 角平分... 小学数学角教案 12-08
- 角的平分线的性质学案 1、通过探究理解角平分线的性质并会运用 2、掌握尺规作图作角平分线 1、怎样用尺规作角的平分线? 2、角的平分线上的点到角的两边的距离有什么关系? (一)课前巩固 1、如图,AB=AD,BC=DC,求... 高中三角函数的教案 12-24
- 《角平分线的性质》导学案 《角平分线的性质》导学案 一、教学目标 (一)知识与技能 1.会作已知角的平分线; 2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质; 3.会利用角的平分线的性质进行证明与计算. (二)... 高中三角函数的教案 12-01
最新更新
更多-
《怀念母亲》教学设计 【教学目标】 【基础知识积累】会写8个生字,学写“真挚、避免、朦胧、凄凉、引用、强烈、思潮起伏、可见一斑”等词语。 【方法与能力】有感情地朗读课文,理解课文内容。 【情感与思想】揣摩重点语句,感受作者... - 高三数学《三角函数图象与性质》知识点总结 高三数学《三角函数图象与性质》知识点总结 1.周期函数 (1)周期函数的定义: 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就... 高中三角函数教案 12-01
- 八年级数学上三角形综合应用讲义随堂测试习题 三角形综合应用(讲义) 知识点睛 在三角形背景下处理问题的思考方向: 1.三角形中的隐含条件是: 边:_______________________________________________. ... 小学三角形教案 12-01
- 初二数学知识点归纳:倒数 初二数学知识点归纳:倒数 倒数就是指数学上设一个数x与其相乘的积为1的数,记为1/x或x。 倒数 1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/... 小学数学教案二年级 12-01
- 乐、能、创——《凡卡》一文第三课时教学谈 《凡卡》是小学语文六年制十二册中的一篇阅读课文,出自于俄国著名作家契诃夫之笔下。文章通过19世纪后期旧俄时代中一个由农村来到城市做学徒的九岁儿童凡卡给爷爷写信的事,叙述了他遭受的种种摧残,揭露了当时社... 小学创模教案 12-01
- 导数及其应用 第三章导数及其应用 知识体系总览 3.1导数的概念 知识梳理 1.平均速度:物理学中,运动物体的位移与所用时间的比称为平均速度,即一段时间或一段位移内的速度;若物体的运动方程为则物体从到这段时间内的平... 小学教案比的应用 12-01
- 人教版八年级数学下册 第19章 一次函数导学案(Word版,共12份打包很实用) 有需更多试题,教案,课件,点击链接加入群聊【初中数学交流群】:(976612020) /?_wv=1027k=5VPCoPL 课件:6.2018-2019新人教版八年级下第20章数据的分析(全章PPT... 小学一年级数学的教案 12-01
- 《蒙娜丽莎之约》教学设计二 【教学目标】 【基础知识积累】读读记记“探访、交涉、风采、赴约、淡雅、捉摸、衬托、幻觉、深远、有朝一日、大洋彼岸”等词语。 【方法与能力】有感情地朗读课文。对照画面,了解课文中具体描写画像的部分,学习... 小学教学教案 12-01
- 《曲线的参数方程》教学设计 《曲线的参数方程》教学设计 1.教学目标 学生经历了从具体问题中获取曲线的参数方程的过程,初步了解参数方程、参数、普通方程的定义,体会参数的意义。能选择适当的参数写出圆的参数方程,体会转化化归思想、数... 小学方程的教案 12-01
- 角平分线的性质的教案九篇
- 角平分线的性质
