88教案网

八年级数学下册《数据的分析》知识点总结

老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“八年级数学下册《数据的分析》知识点总结”,仅供您在工作和学习中参考。

八年级数学下册《数据的分析》知识点总结
知识点:
选用恰当的数据分析数据
知识点详解:
一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:
平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数
中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
极差:是指一组数据中最大数据与最小数据的差。巧计方法,极差=最大值-最小值。
方差:各个数据与平均数之差的平方的平均数,记作s2.巧计方法:方差是偏差的平方的平均数。
标准差:方差的算术平方根,记作s。
二教学时对五个基本统计量的分析:
1算术平均数不难理解易掌握。加权平均数,关键在于理解“权”的含义,权重是一组非负数,权重之和为1,当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。
学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。
采取的措施:弄清权的含义和算术平均数与加权平均数的关系。并且提醒学生再求平均数时注意单位。
2平均数、与中位数、众数的区别于联系。联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数的应用最为广泛。区别:A平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动。B中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。C众数主要研究个数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数。其中众数的学习是重点。
学生出现的问题:求中位数时忘记排序。对三种数据的意义不能正确理解。
采取的措施:加强概念的分析,多做对比练习。
3极差,方差和标准差。方差是重难点,它是描述一组数据的离散程度即稳定性的非常重要的量,离散程度小就越稳定,离散程度大就不稳定,也可称为起伏大。极差、方差、标准差虽然都能反映数据的离散特征,但是,对两组数据来说,极差大的那一组方差不一定大;反过来,方差大的,极差也不一定大。
学生出现的问题:由于方差,标准差的公式较麻烦,在应用时常由于粗心或公式不熟导致错误。
采取的措施:注意方差是“偏差的平方的平均数”这一重要特征。或使用计算器计算。
这些数据经常用来解决一些“选拔”、“决策”类问题。中考中常常综合在一起考察。
14.为了培养学生的环保意识,某校组织课外小组对该市进行空气含尘调查,下面是一天中每2小时测得的数据(单位:g/m3):
0.040.030.020.030.040.01
0.030.040.030.050.010.03
(1)求出这组数据的众数和中位数;
(2)如果对大气飘尘的要求为平均值不超过0.025g/m3,问这天该城市的空气是否符合要求?为什么?
15.A、B两班在一次百科知识对抗赛中的成绩统计如下:
分数5060708090100
人数(A班)351531311
人数(B班)161211155
根据表中数据完成下列各题:
(1)A班众数为分,B班众数为分,从众数看成绩较好的是班;
(2)A班中位数为分,B班中位数为分,A班中成绩在中位数以上的(包括中位数)学生所占的百分比是%,B班中成绩在中位数以上的(包括中位数)学生所占的百分比是%,从中位数看成绩较好的是班;
(3)若成绩在85分以上为优秀,则A班优秀率为%,B班优秀率为%,从优秀率看成绩较好的是班.
(4)A班平均数为分,B班平均数为分,从平均数看成绩较好的是班;
16.某酒店共有6名员工,所有员工的工资如下表所示:
人员经理会计厨师服务员1服务员2勤杂工
月工资(元)4000600900500500400
(1)酒店所有员工的平均月工资是多少元?
(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法。

相关知识

八年级数学下册《勾股定理》知识点总结


八年级数学下册《勾股定理》知识点总结

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

4.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°∠A+∠B=90°
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下:BC=AB
∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下:CD=AB=BD=AD
D为AB的中点
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD⊥AB
6、常用关系式
由三角形面积公式可得:ABCD=ACBC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
8、命题、定理、证明
1、命题的概念
判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。

9、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

10数学口诀.
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
四边形
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形
4.平行四边形的判定:

5.矩形的性质:
因为ABCD是矩形

6.矩形的判定:
四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
8.菱形的判定:
四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
(1)(2)(3)
10.正方形的判定:
四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
11.等腰梯形的性质:
因为ABCD是等腰梯形
12.等腰梯形的判定:
四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.

15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.

一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三公式:
1.S菱形=ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)
2.S平行四边形=ah.a为平行四边形的边,h为a上的高)
3.S梯形=(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四常识:
※1.若n是多边形的边数,则对角线条数公式是:.
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆…….注意:线段有两条对称轴.

八年级数学下册《勾股定理》知识点分析


八年级数学下册《勾股定理》知识点分析

1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理
2.勾股定理的逆定理:
如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:
满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用
例题精讲:
练习:
例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为
解析:可知三边长度为3,4,5,因此周长为12
(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为
解析:可知三边长度为6,8,10,则周长为24
例2:已知直角三角形的两边长分别为3、4,求第三边长.
解析:第一种情况:当直角边为3和4时,则斜边为5
第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7
《点评》此题是一道易错题目,同学们应该认真审题!
例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()
A.斜边长为25
B.三角形周长为25
C.斜边长为5
D.三角形面积为20
解析:根据勾股定理,可知斜边长度为5,选择C

北师大版八年级数学上册《数据的分析》知识点归纳


每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“北师大版八年级数学上册《数据的分析》知识点归纳”,仅供参考,欢迎大家阅读。

北师大版八年级数学上册《数据的分析》知识点归纳

1、描述一组数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

(1)平均数:一般地,对于n个数x1,x2,……,xn我们把(x1+x2+……xn)/n叫做这n个数的算术平均数,简称平均数,记为初中数学北师大版八年级上册《第六章数据的分析》知识点归纳总结。

(2)加权平均数:一组数据x1,x2,……,xn的权分加为w1,w2,……,wn,则称初中数学北师大版八年级上册《第六章数据的分析》知识点归纳总结为这n个数的加权平均数。

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。

5、离散程度

极差:一组数据中最大数据与最小数据的差,叫做极差。

方差:是各个数据与平均数差的平方的平均数

标准差:方差的算术平方根。

一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

文章来源:http://m.jab88.com/j/56683.html

更多

最新更新

更多