老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“八年级数学上册知识点归纳:方程的解”,仅供您在工作和学习中参考。
八年级数学上册知识点归纳:方程的解
一元一次方程;只含有一个未知数,并且未知数的次数是1,系数不等;一元一次方程的标准形式是:ax+b=0(其中x是;一元一次方程的最简形式是:ax=b(a≠0).;不定方程:一个代数方程,含有两个或两个以上未知数;等式:用符号“=”来表示相等关系的式子,叫做等式;方程的根:只含有一个未知数的方程的解,也叫做方程;解一元一次方程的一般步骤:1.去分母:在方程两边
一元一次方程
只含有一个未知数,并且未知数的次数是1,系数不等于0的整式方程,叫做一元一次方程.
一元一次方程的标准形式是:ax+b=0(其中x是未知数,a、b是已知数,并且a≠0).
一元一次方程的最简形式是:ax=b(a≠0).
不定方程:一个代数方程,含有两个或两个以上未知数时,叫做不定方程,不定方程一般有无穷多解。代数方程:代数方程通常指整式方程。有时也泛指方程两边都是代数式的情形,因而也包括分式方程和无理方程。
等式:用符号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.性质:两边同加同减一个数或等式仍为等式;两边同乘同除一个数或等式(除数不能是0)仍为等式。
方程的根:只含有一个未知数的方程的解,也叫做方程的根。
解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。
矛盾方程:一个方程,如果不存在使其左边与右边的值相等的未知数的值,这样的方程叫矛盾方程.知识点2:
二元一次方程
有两个未知数并且未知项的次数是1,这样的方程,叫做二元一次方程.
二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.
解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.二元一次方程组的两种解法:
(1)代入消元法,简称代入法.
①把方程组里的任何一个未知数化成用另一个未知数的代数式表示.
②把这个代数式代入另一个方程里,消去一个未知数,得到一个一元一次方程.
③解这个一元一次方程,求得一个未知数的值,然后再求另一个未知数的值.
④把求得两个未知数的值写在一起,就是原方程组的解.
2)加减消元法,简称加减法.
①把一个方程或两个方程的两边都乘以适当的数,使同一个未知数的系数的绝对值相等.
②把所得的两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程.
③解这个一元一次方程,求得一个未知数的值,然后再求另一个未知数的值.
④把求得的两个未知数的值写在一起,就是原方程组的解.
二元一次方程组解的情况:
一元一次不等式(组):
不等号有>、≥、<、≤或≠等等.用不等号表示不等关系的式子,叫做不等式.
只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫做一元一次不等式.如
axb或axb(a≠0)
几个一元一次不等式所组成的不等式组,叫做一元一次不等式组
不等式基本性质:
(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变.
(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
一元一次不等式的解法步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化成1
(如果乘数和除数是负数,要把不等号改变方向)
一元一次不等式组的解法步骤:(1)分别求出不等式组中所有一元一次不等式的解集.
(2)在数轴上表示各个不等式的解集.(3)写出不等式组的解集.
一元一次不等式组的四种情况:
知识点4
一元二次方程
基本概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.
一元二次方程3x2+5x-2=0的常数项是-2(任意).一次项系数为5(任意),二次项是3(任意不为0).一元二次方程的求根公式:
一元二次方程的解法:
1.解一元二次方程的直接开平方法
如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负数,则根据平方根的概念可以用直接开平方法来解.
2.解一元二次方程的配方法
先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,可通过直接开平方法来求方程的解,也就是先配方再求解.
3.解一元二次方程的公式法
利用求根公式解一元二次方程的方法叫公式法.
4.解一元二次方程的因式分解法
在一元二次方程的一边是0,而另一边易于分解成两个一次因式时,可先将一边分解成两个一次因式的积,再分别令每个因式为零,通过解一元一次方程,可求得原方程的解.
一元二次方程的解
21.方程x?4?0的根为.
A.x=2B.x=-2C.x1=2,x2=-2D.x=4
2.方程x2-1=0的两根为.
A.x=1B.x=-1C.x1=1,x2=-1D.x=2
3.方程(x-3)(x+4)=0的两根为.
A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-4
4.方程x(x-2)=0的两根为.
A.x1=0,x2=2B.x1=1,x2=2C.x1=0,x2=-2D.x1=1,x2=-2
5.方程x2-9=0的两根为.
A.x=3B.x=-3C.x1=3,x2=-3D.x1=+3,x2=-3
方程解的情况及换元法
21.一元二次方程4x?3x?2?0的根的情况是.
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
2.不解方程,判别方程3x2-5x+3=0的根的情况是.
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“八年级数学上册知识点:分式方程的应用冀教版”,希望能为您提供更多的参考。
八年级数学上册知识点:分式方程的应用冀教版
知识点
含义:分母中含有未知数的方程叫做分式方程。
分式方程的解法:
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};
②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;
③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。
课后练习
1)66x+17y=3967
25x+y=1200
答案:x=48y=47
(2)18x+23y=2303
74x-y=1998
答案:x=27y=79
(3)44x+90y=7796
44x+y=3476
答案:x=79y=48
(4)76x-66y=4082
30x-y=2940
答案:x=98y=51
(5)67x+54y=8546
71x-y=5680
答案:x=80y=59
(6)42x-95y=-1410
21x-y=1575
答案:x=75y=48
(7)47x-40y=853
34x-y=2006
答案:x=59y=48
(8)19x-32y=-1786
75x+y=4950
答案:x=66y=95
(9)97x+24y=7202
58x-y=2900
答案:x=50y=98
(10)42x+85y=6362
63x-y=1638
答案:x=26y=62
八年级数学上册知识点归纳:分式的加减
一、约分与通分:
1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;
分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:
(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;
(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;
(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;
(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;
(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
注意:
(1)分式的约分和通分都是依据分式的基本性质;
(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
(3)约分时,分子与分母不是乘积形式,不能约分.
3.求最简公分母的方法是:
(1)将各个分母分解因式;
(2)找各分母系数的最小公倍数;
(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
二、分式的运算:
1.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。
2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
4.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。
5.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。
【分式的运算考点分析】
分式的运算通常是综合考查分式的加减、乘除、约分及分解因式等知识,是中考的重点。特别是化简求值已经成近两年中考的热点。题型既有选择、填空题,也有计算题。
【分式的运算知识点误区】
(1)互为相反数的因式约分时漏掉负号;
(2)通分时漏乘而出错;
(3)把通分与去分母混淆,本是通分,却把分式中的分母丢掉;
(4)计算顺序搞乱而出错。
【典型例题】
分式的四则运算
1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/c±b/c=(a±b)/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/b±c/d=(ad±cb)/bd
3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b*c/d=ac/bd
4.分式的除法法则:
(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c
不论什么样的计算,其过程都是需要大家耐心和细心的。
文章来源://m.jab88.com/j/56693.html
更多