一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“2017年八年级数学上册14.3因式分解14.3.1提公因式法学案”,仅供参考,欢迎大家阅读。
14.3因式分解
14.3.1提公因式法
1.明确提公因式法分解因式与单项式乘多项式的关系.
2.能正确找出多项式的公因式,熟练用提公因式法分解简单的多项式.
一、阅读教材P114“探究”,完成预习内容.
知识准备
试判断下面两个式子的关系:
(1)(a-b)2______(b-a)2;
(2)(a-b)3______-(b-a)3.
(1)把下列多项式写成整式的积的形式:
x2+x=________;x2-1=________;
ma+mb+mc=________.
(2)把一个多项式化成几个整式的________的形式,这种变形叫做把这个多项式因式分解(或分解因式).
(3)多项式与因式分解的关系:
多项式????因式分解整式的乘法整式的乘积
整式的乘法与因式分解是两种互逆的变形,整式乘法的结果是和,因式分解的结果是积.
自学反馈
下列各式从左到右的变形属于因式分解的是()
A.a2+1=aa+1a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
因式分解的结果应该是整式的积.
二、阅读教材P114~115“例1和例2”,完成下列问题:
(1)公因式:各项都含有的________的因式.
(2)公因式的确定方法:对于数字取各项系数的最________;对于字母(含字母的多项式),取各项都含有的字母(含字母的多项式),相同的字母(含字母的多项式)的指数,取次数最________的.
(3)找出下列多项式的公因式:
多项式2x2+6x3中各项的公因式是________;
多项式x(a-3)+y(a-3)2中各项的公因式是________.
(4)提公因式:一般地,如果多项式的各项有公因式,可以把这个________提取出来,将多项式写成公因式与另一个因式________的形式,这种分解因式的方法叫做提公因式法.
在将多项式分解因式的时候首先提取公因式,分解要彻底.
自学反馈
分解因式:(1)8a3b2-12ab3c;(2)-3x2+6xy-3x;
(3)x(x-y)-y(x-y).
先找准公因式,分解时注意不要出现符号问题.
活动1小组讨论
例1计算:(1)4x2y3+8x2y2z-12xy2z;
(2)-a2b3c+2ab2c3-ab2c;
(3)5x(x-2y)3-20y(2y-x)3.
解:(1)原式=4xy2(xy+2xz-3z).
(2)原式=-ab2c(ab-2c2+1).
(3)原式=5x(x-2y)3+20y(x-2y)3=5(x-2y)3(x+4y).
第(3)小题先将(x-3y)3和(2y-x)3化成同底数幂,变形时注意符号.
例2已知2x-y=13,xy=2,求2x4y3-x3y4的值.
解:原式=x3y3(2x-y)=(xy)3(2x-y)
=23×13=83.
先分解因式,再代值计算.
活动2跟踪训练
1.计算:(1)m(3-m)+2(m-3);
(2)a(a-b-c)+b(c-a+b)+c(b+c-a).
2.利用分解因式计算:7.6×201.7+4.3×201.7-1.9×201.7.
因式分解的实质就是乘法分配律的反用.
活动3课堂小结
1.提公因式法分解因式,关键在于找到公因式,用恒等变形的方法创设公因式.
2.提公因式法分解因式的步骤:先排列;找出公因式并写出来作为一个因式;另一个因式为原式与公因式的商.
3.因为因式分解是恒等变形,所以,把分解的结果乘出来看是否得到原式,就可以辨别分解的正确与错误.
【预习导学】
知识探究
一、(1)=(2)=(1)x(x+1)(x+1)(x-1)m(a+b+c)(2)积
自学反馈
D
知识探究
二、(1)相同(2)大公约数低(3)2x2a-3(4)公因式乘积
自学反馈
(1)4ab2(2a2-3bc).(2)-3x(x-2y+1).(3)(x-y)2.
【合作探究】
活动2跟踪训练
1.(1)(m-2)(3-m).(2)(b+c-a)2.2.2017.提公因式法
§2.2.1提公因式法(一)
●教学目标
教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.
能力训练要求通过找公因式,培养学生的观察能力.
情感与价值观要求让学生养成独立思考的习惯,同时培养学生的合作交流意识
●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.[
●教学难点让学生识别多项式的公因式.
●教学方法独立思考——合作交流法.
●教学过程
Ⅰ.创设问题情境,引入新课
引例:一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积。
Ⅱ.新课讲解
1.公因式与提公因式法分解因式的概念.
若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.
ma+mb+mc=m(a+b+c)
从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
⑴公因式:多项式的各项中都含有的因式叫做它的公因式
⑵提公因式法:把多项式中的公因式提取出来的分解因式方法叫做提公因式法.
2.例题讲解
例1、将下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
3.议一议
提公因式法的步骤.①找各项系数的最大公约数,
②找各项中含有的相同的字母,相同字母的指数取次数最低的.
4.想一想
提公因式法分解因式与单项式乘以多项式有什么关系?(互逆变换)
Ⅲ.课堂练习
1、随堂练习P43~44
2、补充练习把3x2-6xy+x分解因式
Ⅳ.课时小结
1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的
(4)所有这些因式的乘积即为公因式.
4、特别注意:①不要漏项②公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题
Ⅴ.课后作业习题2.2
Ⅳ.活动与探究
利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.
●备课资料
一、把下列各式分解因式:
1、2a-4b;2、ax2+ax-4a;3、3ab2-3a2b;4、2x3+2x2-6x;
5、7x2+7x+14;6、-12a2b+24ab2;7、xy-x2y2-x3y3;8、27x3+9x2y.
2.2提公因式法(二)教案
§2.2.2提公因式法(二)
●教学目标
教学知识点进一步让学生掌握用提公因式法分解因式的方法.
能力训练要求进一步培养学生的观察能力和类比推理能力.
情感与价值观要求
通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.
●教学重点能观察出公因式是多项式的情况,并能合理地进行分解因式.
●教学难点准确找出公因式,并能正确进行分解因式.
●教学方法类比学习法
●教学过程
Ⅰ.创设问题情境,引入新课
深入探索用提公因式法。
Ⅱ.新课讲解
一、例题讲解
例2、把a(x-3)+2b(x-3)分解因式.
例3、把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
二、做一做
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立
(1)2-a=__________(a-2);(2)y-x=__________(x-y);
(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;
(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).
Ⅲ.课堂练习
1、随堂练习P45
2、补充练习把下列各式分解因式
1、5(x-y)3+10(y-x)22、m(a-b)-n(b-a)
3、m(m-n)+n(n-m)4、m(m-n)(p-q)-n(n-m)(p-q)
5.(b-a)2+a(a-b)+b(b-a)
Ⅳ.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.
Ⅴ.课后作业习题2.3
Ⅵ.活动与探究
把(a+b-c)(a-b+c)+(b-a+c)(b-a-c)分解因式.
●备课资料
把下列各式分解因式:
1、a(x-y)-b(y-x)+c(x-y);2、x2y-3xy2+y3;
3、2(x-y)2+3(y-x);4、5(m-n)2+2(n-m)3.
文章来源:http://m.jab88.com/j/56681.html
更多