88教案网

八年级数学上册知识点:无理数

老师工作中的一部分是写教案课件,大家应该要写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们到底知道多少优秀的教案课件呢?小编特地为您收集整理“八年级数学上册知识点:无理数”,欢迎阅读,希望您能够喜欢并分享!

八年级数学上册知识点:无理数m.JAb88.COm

1.无理数的定义
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
初一数学阶段接触到的无理数主要有无限不循环小数、开方开不尽的数、含有圆周率π的代数式。
2.有理数和无理数的区别
实数分为有理数和无理数。有理数和无理数主要区别有两点:
1)把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8;1/3=0.3...而无理数只能写成无限不循环小数,比如√2=1.4142,π=3.1415926,根据这一点,人们把无理数定义为无限不循环小数.
2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫“比数”,把无理数改叫“非比数”.

初一时,我们认识了负数,使数的范围扩展到了有理数,初二,我们又开始学习了无理数,把数的范围再一次扩展到了实数。刚刚学习无理数,认为无理数不象有理数那样,直观易懂,总有一种虚幻的感觉,其次,无理数和有理数一样,有自己的鲜明特征。那么怎样学习无理数呢?请同学们注意以下四个方面。
一.明确无理数的存在
无理数来自实践,无理数并不“无理”,也不是人们臆想出来的,它是实实在在存在的,例如:
(1)一个直角三角形,两条直角边长分别为1和2,由勾股定理知,它的斜边长为;
(2)任何一个圆,它的周长和直径之比为一常数等等;
像这样的数,在我们周围的生活中,不是只有少数几个,而是像有理数一样有无限个。
二.弄清无理数的定义
教材中指出:无限不循环小数叫无理数,这说明无理数是具有两个基本特征的小数:一是小数位数是无限的;二是不循环的。这对初学者来说有一定难度,因此,我们必须掌握它的表现形式。
三.掌握无理数的表现形式
在初中阶段,无理数表现形式主要有以下几种:
1.无限不循环的小数,如0.1010010001……(两个1之间依次多一个0)
2.含的数,如:,,等。
3.开方开不尽而得到的数,如,等。
4.某些三角函数值:如,等。
四.辨别一些模糊认识
1.无限小数都是无理数
无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。
2.无理数包括正无理数、负无理数和零。
受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。
3.带根号的数是无理数。
是有理数2,是有理数-2,可见带根号的数不一定是无理数。
4.无理数是用根号形式表示的数。
是无理数,但并不是用根号形式表示的,再如:0.1010010001……(两个1之间依次多一个),亦为不带根号的无理数。
5.无理数是开方开不尽的数。
无理数并非由开方的结果来定义的,事实上,如,0.232232223……,等无理数,都不是由开方得到的。
6.两个无理数的和、差、积、商仍是无理数。
两个无理数的和,差,积,商不一定是无理数,如:
等都是有理数。
7.无理数与有理数的乘积是无理数。
这种说法是错误的!
由等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!
如等足以推翻以上结论。
8.有些无理数是分数。
因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。
如,但一定要注意它并不是分数。
9.无理数比有理数少。
这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。
10.一个无理数的平方一定是有理数。
这种说法错误,不要误认为只有等无理数,如等也是无理数,显然等不是有理数。

相关阅读

八年级上册数学《认识无理数》知识点北师大版


作为老师的任务写教案课件是少不了的,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“八年级上册数学《认识无理数》知识点北师大版”供大家借鉴和使用,希望大家分享!

八年级上册数学《认识无理数》知识点北师大版

1.无限小数都是无理数无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。

2.无理数包括正无理数、负无理数和零。受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。

3.带根号的数是无理数。是有理数2,是有理数-2,可见带根号的数不一定是无理数。

4.无理数是用根号形式表示的数。是无理数,但并不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。

5.无理数是开方开不尽的数。无理数并非由开方的结果来定义的,事实上,如,0.232232223,等无理数,都不是由开方得到的。

6.两个无理数的和、差、积、商仍是无理数。两个无理数的和,差,积,商不一定是无理数,如:等都是有理数。

7.无理数与有理数的乘积是无理数。这种说法是错误的!由等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!如等足以推翻以上结论。8.有些无理数是分数。因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。如,但一定要注意它并不是分数。

9.无理数比有理数少。这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。

10.一个无理数的平方一定是有理数。这种说法错误,不要误认为只有等无理数,如等也是无理数,显然等不是有理数。

课后练习

1.下列各数中:-1,,3.14,-π,3,0,2,,,-0.2020020002……(相邻两个2之间0的个数逐次加1).其中,是有理数的是_____________,是无理数的是_______________.在上面的有理数中,分数有____________,整数有______________.

2.x2=8,则x______分数,______整数,______有理数.(填“是”或“不是”)

3.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)

4.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).

5.下列数中是无理数的是().

A.0.12B.0.5C.0.6

6.下列说法中正确的是().

A.不循环小数是无理数

B.分数不是有理数

C.有理数都是有限小数

D.3.1415926是有理数

八年级上册《认识无理数》知识点整理北师大版


每个老师需要在上课前弄好自己的教案课件,大家在认真写教案课件了。对教案课件的工作进行一个详细的计划,才能对工作更加有帮助!有多少经典范文是适合教案课件呢?以下是小编为大家精心整理的“八年级上册《认识无理数》知识点整理北师大版”,仅供参考,欢迎大家阅读。

八年级上册《认识无理数》知识点整理北师大版

1.无限小数都是无理数无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。
2.无理数包括正无理数、负无理数和零。受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。
3.带根号的数是无理数。是有理数2,是有理数-2,可见带根号的数不一定是无理数。
4.无理数是用根号形式表示的数。是无理数,但并不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。
5.无理数是开方开不尽的数。无理数并非由开方的结果来定义的,事实上,如,0.232232223,等无理数,都不是由开方得到的。
6.两个无理数的和、差、积、商仍是无理数。两个无理数的和,差,积,商不一定是无理数,如:等都是有理数。
7.无理数与有理数的乘积是无理数。这种说法是错误的!由等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!如等足以推翻以上结论。8.有些无理数是分数。因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。如,但一定要注意它并不是分数。
9.无理数比有理数少。这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。
10.一个无理数的平方一定是有理数。这种说法错误,不要误认为只有等无理数,如等也是无理数,显然等不是有理数。

八年级数学上册知识点:相反数


八年级数学上册知识点:相反数

初中数学知识点总结:相反数
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0?a+b=0?a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
1.定义
和是0的两个数互为相反数。0的相反数还是0.
2.几何意义
相反数的几何意义在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数.
初中数学相反数知识点总结(二)

精选问题
【例题1】若(X-1)与/2X+Y/互为相反数,求(-X)的2012次方+Y的值
解:
∵(X-1)≥0,/2X+Y/≥0
又∵(X-1)与/2X+Y/互为相反数
∴X-1)=0,/2X+Y/=0...
点击原题查看详解
【例题2】(y-1)的平方与|2x-y+4|互为相反数,求实数x+y的倒数
解:
∵(y-1)^20,|2x-y+4|0
又∵互为相反数
∴(y-1)=0,|2x-y+4|=0...
点击原题查看详解
【例题3】若|a-b+1|与(a+2b+4)互为相反数则(a+b)的2012次方=________
解:
即|a-b+1|+根号a+2b+4=0
所以a-b+1=0...
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0a+b=0a、b互为相反数.

文章来源:http://m.jab88.com/j/52083.html

更多

最新更新

更多