88教案网

八年级数学上11.2.2三角形的外角(人教版)

老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“八年级数学上11.2.2三角形的外角(人教版)”,仅供参考,希望能为您提供参考!

11.2.2三角形的外角

【教学目标】
1.了解三角形外角的概念.
2.探索并证明三角形的一个外角等于与它不相邻的两个内角的和.
3.运用三角形的一个外角等于与它不相邻的两个内角的和解决简单问题.
【重点难点】
重点:1.了解三角形外角的概念及性质.
2.能利用三角形外角的性质解决简单问题.
难点:1.能够证明“三角形的一个外角等于与它不相邻的两个内角的和”.
2.了解“三角形的一个外角等于与它不相邻的两个内角的和”的应用范围,并能解决简单问题.

┃教学过程设计┃
教学过程设计意图
一、创设情境,导入新课
问题1:如图,已知BD∥CE,∠A=45°,∠C=65°,求∠1和∠2的度数.
学生回答:由BD∥CE可知,∠1=∠C=65°,由三角形内角和等于180°可知,∠2的邻补角等于70°,所以∠2=110°.
问题2:在问题1中,∠2被称为三角形的外角,根据∠2的构成,你能说明什么叫三角形的外角吗?
学生讨论回答,教师归纳:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.利用问题回顾三角形内角和定理,并利用旧知识,发现新知识.
二、师生互动,探究新知
1.根据定义探索三角形外角的个数
问题1:根据定义,画出三角形的外角.你能画出多少个?
学生回答:如图,可以画出6个外角.
问题2:这几个角有什么关系?(位置关系和数量关系)
学生回答,教师补充说明.
2.手脑并用探索三角形外角的性质及外角和
问题1:如图,在△ABC中,∠ABC=65°,∠ACB=40°,
求∠BAC的度数及三角形的外角∠1,∠2,∠3的度数.
学生回答:∠BAC=75°,∠1=105°,∠2=115°,∠3=140°.
问题2:观察你的结论,你能发现三角形的三个内角与它的外角有什么关系吗?三个外角又有什么关系?
学生讨论回答,教师总结:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的外角和等于360°.
问题3:试证明三角形的一个外角等于与它不相邻的两个内角的和.
学生回答:
已知:在△ABC中,∠1是三角形的一个外角.
求证:∠1=∠A+∠B.
证明:∵∠ACB+∠A+∠B=180°(三角形的内角和等于180°),
∴∠ACB=180°-∠A-∠B.
∵∠1与∠ACB是邻补角,
∴∠1+∠ACB=180°.
∴∠1=180°-∠ACB=180°-(180°-∠A-∠B)=∠A+∠B.
问题4:试证明三角形的外角和等于360°.
学生回答,教师引导并点评.
根据三角形外角的定义,找出三角形所有的外角,并探索这些角的特点.在探索的过程中,使学生加深印象.在教科书中并没有这个环节,但在教学时,这个环节是必不可少的,因为这是为探索外角的性质及外角和打基础.

通过计算、讨论、证明的方式探索三角形外角的性质及外角和,培养学生的合作交流及逻辑思维能力.在学生的自主探究过程中,教师要关注学生之间的交流合作,并适时加以引导,对学生所得出的正确结论给予肯定.同时还要强调定理证明的基本步骤,并要求学生独立完成证明过程.
三、运用新知,解决问题
1.如图,∠BDC是________的外角,∠BDC=________+________,∠EFC是________的外角,∠EFC=________+________,∠BFC是________的外角,∠BFC=________+________,∠BFC>________.
2.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,证明∠BAC>∠B.通过基础练习,加深对三角形外角的认识,熟练基本技能.对于第2题,如果学生没有思路,教师要给予提示,要让学生有利用面积求高的意识.
四、课堂小结,提炼观点
1.本节主要学习三角形的外角的概念及性质.
2.师生互动总结本节课中需要注意的问题.
五、布置作业,巩固提升
教材第16、17页的第5、6题.

【板书设计】
三角形的外角
三角形外角定理练习
解析解析
【教学反思】
本节主要介绍三角形的外角及其性质,是一节探究课.
本节的知识是要让学生了解三角形的外角及其性质,所以在教学过程中,教师放手让学生探索,利用多种方法进行研究.同时关注学生的合作交流,开阔学生的思路,让学生在经历整个探索过程的同时,体会数学的严谨性,培养学生的逻辑思维和解决问题的能力.
在教学设计上,利用变式训练让学生体会数学知识应用的灵活性,感受数学基础的重要,在获得数学活动经验的同时,提高学生探究、发现和创新的能力.

延伸阅读

11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“11.2与三角形有关的角11.2.2三角形的外角学案新版新人教版”,希望能为您提供更多的参考。

11.2.2三角形的外角
1.探索并了解三角形的外角的两条性质.
2.利用学过的定理论证这些性质.
3.利用三角形的外角性质解决与其有关的实际问题.
阅读教材P14~15,完成预习内容.
1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做____________.
图1
如图2,一个三角形有________个外角.每个顶点处有________个外角.
图2

2.如图1,△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=________.试猜想∠ACD与∠A,∠B的关系是____________.
3.试结合图形写出证明过程:
证明:过点C作CM∥AB,延长BC到D.
则∠1=∠A(两直线平行,内错角相等),
∠2=∠B(两直线平行,同位角相等),
所以∠1+∠2=∠A+∠B,
即________=∠A+∠B.
知识探究
一般地,由三角形内角和定理可以推出:
三角形的外角等于与它不相邻的________________.
自学反馈
1.判断下列∠1是哪个三角形的外角:
2.求下列各图中∠1的度数.
活动1小组讨论
1.如图∠1+∠2+∠3=?
解:∠1+∠BAC=180°,
∠2+∠ABC=180°,
∠3+∠ACB=180°,
三个式子相加得到:
∠1+∠2+∠3+∠BAC+∠ABC+∠ACB=540°.
而∠BAC+∠ABC+∠ACB=180°,
所以∠1+∠2+∠3=360°.
2.结论:三角形的外角和是360°.
活动2跟踪训练
1.求下列各图中∠1的度数.

2.求下列各图中∠1和∠2的度数.
3.已知三角形各外角的比为2∶3∶4,求它的每个外角的度数?
4.如图,AB∥CD,∠A=40°,∠D=45°,求∠1和∠2.
活动3课堂小结
三角形外角的性质:
1.三角形的一个外角等于与它不相邻的两个内角的和.
2.三角形的外角和是360°.
【预习导学】
1.三角形的外角622.120°∠A+∠B=∠ACD
3.∠ACD
知识探究
两个内角的和
自学反馈
1.略.2.略.
【合作探究】
活动2跟踪训练
1.∠1=90°∠1=80°∠1=95°.2.略.3.设三个外角度数分别为2x、3x、4x,由三角形外角和为360°,得2x+3x+4x=360°.解得x=40°.所以三个外角度数分别为80°,120°,160°.4.∠1=40°,∠2=85°.

三角形的外角


一、课题:7.2.2三角形的外角

二、学习目标:

㈠知识与技能:1.理解三角形的外角的定义;

2.掌握三角形的内角和外角的关系。

㈡过程与方法:1.通过剪、拼的方法猜想归纳出“三角形一个外角等于与它不相邻的两个内角的和。”,然后再证明这个结论,使学生体会到从实验猜想归纳证明得出结论的科学探究方法。

2.在学生操作、观察、思考和交流和过程中,丰富学生的生活,激发学生进一步探索知识的热情。

㈢情感、态度与价值观:通过动手操作,使学生在学习活动中学会合作,培养其相互协作意识及数学表达能力,体验探索、交流与成功。

三、教学重难点:1.重点:三角形的内角与外角的关系。

2.难点:外角定理的论证过程。

四、课时:第二课时课型:新授课。

五、教学准备:多媒体课件、三角形纸板、剪纸刀。

六、教学过程:

㈠、创设情景,导入新课

每天清晨,小明同学都到市民广场去跑步,市民广场是一个三角形形状的广场,小明每天沿着这个广场边缘的小路,按逆时针方向跑步(如图),小明每从一条街道转到下一条街道时,身体转过的角是哪些角?

㈡、观察归纳,学习新知

活动一:

1.做一做:画△ABC把它的BC边延长,得到∠ACD。

2.观察:

∠ACD的特征:①∠ACD的顶点是;

②一边AC是;

③另一边CD是。

3.归纳定义:

三角形的外角:三角形一边与另一边的延长线组成的角。

4.思考:

以某三角形的一个顶点为顶点的外角有个,它们互为;因此,一个三角形有个外角。

㈢、合作交流,解读探究

活动二:

探索三角形的外角与内角的关系

问题1:∠ACD与它相邻的内角∠ACB是什么关系?

问题2:在△ABC中,∠A=70°,∠B=60°,你能求出∠ACD吗?

问题3:在△ABC中,∠ACD与∠A与∠B是什么关系呢?

A

B

C

D

活动三:

在△ABC中,∠ACD是一个外角,为什么∠ACD=∠A+∠B?

方法一:(利用三角形内角和定理)

∵∠ACB+∠A+∠B=180°(三角形的内角和为180°)

∠ACB+∠ACD=180°(邻补角定义)

∴∠ACD=∠A+∠B(等量代换)

方法二:(利用平行线)

过C作CE∥AB

则∠1=∠A(两直线平行,内错角相等)

∠2=∠B(两直线平行,同位角相等)

∴∠ACD=∠1+∠2=∠A+∠B(等量代换)

活动四:

比较∠ACD与∠A、∠B的大小。

A

B

C

D

活动五:归纳三角形外角的性质:

1.三角形的一个外角与它相邻的内角互补;

2.三角形的一个外角等于与它不相邻的两个内角的和;

3.三角形的一个外角大于与它不相邻的任何一个内角。

活动六:巩固练习

课本P81练习;

㈣课时小结

本节课你学到了哪些知识?

1.三角形外角的定义。

2.三角形外角的性质。

㈤、课后作业

活动七:

必做题:P82~83习题7.2中第5、6、8三题;

选做题:P83习题7.2中第9题。

七、板书设计:

7.2.2三角形的外角

一、三角形外角的概念

二、探究三角形的外角与不相邻的内角间的关系

(投影区)

八、教学反思:

八年级数学上册第11章三角形11.2三角形的内外角11.2.1三角形的内角学案新版新人教版


课题:11.2.1三角形的内角(1)
【学习目标】
1、了解三角形的内角;会用平行线的性质与平角的定义证明三角形内角和等于180;
2、了解辅助线的作用,能准确、规范地利用辅助线进行证明;
3、规范学生的推理过程,能够独立完成简单的证明过程。
【学习重点】
1、了解三角形的内角等于180;
2、利用三角形的内角等于180解答简单的数学问题。
【学习难点】
1、利用所学知识证明三角形的内角等于180;
2、认识辅助线,了解辅助线的做法和作用;
3、独立完成证明过程。
【学习过程】
※知识链接
阅读教材第11至第12页,用红笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑
※合作与探究
一、自主探究
探究1:三角形的内角和
1、请你画出一个任意三角形,测量各角的度数,并计算出它的内角和.

2、任意画一个三角形,将它的内角剪下拼合在一起,你可以得到什么结论?你有几种拼法?

3、请你用折叠的方法验证出三角形的内角和的度数

4、根据折叠的方法试证明三角形内角和定理“三角形内角和等于180度”,你能想出多少种方法。

二、合作探究
探究2:三角形内角和定理的应用
例题1:在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B的度数是多少?

例2:如图是A、B、C三岛的平面图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向。从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?

※随堂检测
1、在△ABC中,若∠B=40,∠C=80,则∠A的度数为()
A、30B、40C、50D、60
2、在△ABC中,若∠A=20,∠B=60,则△ABC的形状是()
A、等边三角形B、锐角三角形
C、直角三角形D、钝角三角形
3、在△ABC中,若∠A:∠B=2:1,∠C=60,则∠A=________。
4、如下图是一块三角形木板的残余部分,若量得∠A=100,∠B=45,则这块三角形木板的另外一个角的度数是_________。
5、如下图,在△ABC中,DE//BC,若∠A=35,∠ABC=65,则∠AED=________。

6、如图,∠1=20,∠2=25,∠A=35,求∠BDC的度数。

※拓展提高
1、如图1是一个任意的五角星,则它的五个角的和为()
A、50B、100C、180D、200
2、如图2,在△ABC中,∠ABC=∠C,若BD平分∠ABC,∠A=36,则
∠BDC=___________。

3、一个零件的形状如下图所示,按规定∠A=90,∠B和∠C分别是32和21,检验工人量得∠BDC=148,请你判断这个零件是否合格?为什么?

教(学)后反思:_____________________________________________________________________
_____________________________________________________________________(实际使用课时______节)
课题:11.2.1三角形的内角(2)

课型:新课计划课时:1节主备人:黄永玉审核人:___________
【学习目标】
1、理解并掌握三角形内角和定理的推论;
2、活用直角三角形两锐角互余的性质解决问题。
【学习重点】
直角三角形两锐角互余的性质
【学习难点】
直角三角形性质的应用
【学习过程】
※知识链接:
1、在△ABC中,若∠C=90,∠A=30,则∠B=________。
2、在△ABC中,若∠C=90,∠A=∠B,则∠B=________。
3、在△ABC中,若∠A=30,∠B=60,则△ABC是_______三角形。
※合作探究:
阅读教材第13至第14页,用红笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑
探究1:直角三角形的两个锐角互余
例1:如右图,在直角三角形中,∠C=90,请验证∠A与∠B的关系。

通过探究得到结论:直角三角形的两个锐角_________。

例2:如下图,∠C=∠D=90,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?

探究2:两个锐角互余的三角形是否是直角三角形
例3、已知CD⊥AB,∠A=∠BCD,试判断△ABC的形状,并说明理由。

通过探究得到结论:一个三角形中,如果两个锐角互余,那么这个三角形是_________三角形。

※随堂检测
1、若三角形两个内角的差等于第三个内角,则它是()
A、锐角三角形B、钝角三角形
C、直角三角形D、等边三角形
2、如图1,∠ACB=90,CD⊥AB,垂足为D下列结论错误的是()
A、图中有三个直角三角形B、∠1=∠2
C、∠1和∠B都是∠A的余角D、∠2=∠A
3、如图2,DB、EC交于点A,若∠B=∠E=90,∠C=42,则∠D的度数是()
A、48B、42C、84D、58
4、如图3,Rt△ABC中,∠ACB=90,DE过点C,且DE//AB,若∠ACD=60,则
∠B的度数是()
A、30B、45C、60D、65

5、如图4,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38,则∠A=_________。
6、如图5,有一底角为45的等腰三角形纸片,现过底边上一点E,沿与底边垂直的方向将其剪开,得到△DEC,则∠EDC=______________。
7、如图6,直线a//b,EF⊥CD于点F,若∠2=65,则∠1=______________。

8、如图7,在△ABC中,EF//AB,∠1=55,若∠B=35,则△ABC是________三角形。
9、如图8,把一根直尺与一块三角板如图8放置,若∠1=40,则∠2=______________。

※拓展提高
1、如图,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC,交CA的延长线于点D,求∠ABD的度数。

2、如图,已知∠A=27,∠D=20,∠B=43,求证:BC⊥ED。

教(学)后反思:________________________________________________________________
__________________________________________________________________(实际使用课时______节)

文章来源:http://m.jab88.com/j/52074.html

更多

最新更新

更多