88教案网

初一数学上册第二章整式的加减教案设计

教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的初一数学上册第二章整式的加减教案设计,欢迎阅读,希望您能够喜欢并分享!

考考你:
1(1)如图,用代数式表示阴影部分的面积s;(2)如果a=2,b=4,求s的值。

2四川大地震时,某校305位同学参加了捐款活动,在活动中有的同学每人捐a元,其余同学每人捐(a+1)元,(1)你能用代数式表示他们一共捐款多少元吗?(2)如果a=5,求一共捐款多少元?(3)如果a=8,求一共捐款多少元?(引入课题)

二合作交流,探究新知
1代数式的概念
根据上面两题,请你说说什么叫代数式的值吗?
用_____代替代数式中的____按照代数式指明的运算,计算出来的______叫作_________.
思考:(1)上面2题中,用a=5与a=8代替代数式中的字母得到的值相等吗?(2)上面2题中,a可以等于负数吗?
温馨提示:(1)代数式中字母取不同的值,代数式的值一般是不同的,因此代数式的值一定要交待是字母取几的值。形式:“当…时,…=…”,(2)求代数式的值时,字母的取值一定要使实际问题有意义,当代数式是分式时,字母的取值不能使分母为0,如:
中的t不能等于0,中的字母x不能等于。
2怎么求代数的值
做一做:
1根据下面给的x的值,你能算出代数式-2x+9的值吗?
(1)x=0.5(2)x=-2,

2计算代数式的值:(1)当a=-4,b=3;(2)当a=,b=-2

思考:(1)现在你能归纳求代数的值有哪些步骤了吗?(第一步:___________________
第二步:________________________________________________________________)
(2)把代数式中的字母用负数代替时,或者用分数代替,且是求幂时,应该注意什么?
(__________________________________)
三应用迁移,巩固提高
1先化简再代入求值
例1当a=-2时,求代数式的值。

2整体代入
例2已知:,求代数式的值
例3当x=-5时,代数式的值是3,求当x=5时,代数式的值。

3灵活处理
例4已知,则

例5已知a+b+c=0,求代数式(a+b)(b+c)(c+a)+abc的值

四,课堂练习,巩固提高
P75练习12
五反思小结,拓展提高
这一节课,我们学习了什么?

相关知识

初一数学下册第二章平行线与相交线教案


老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“初一数学下册第二章平行线与相交线教案”,仅供您在工作和学习中参考。

第二章平行线与相交线
2.1台球桌面上的角
教学目标:1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。
教学重点:1、余角、补角、对顶角的概念
2、理解等角的余角相等、等角的补角相等、对顶角相等。
教学难点:理解等角的余角相等、等角的补角相等。判断是否是对顶角。
教学方法:观察、探索、归纳总结。
准备活动:在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?
教学过程:
内容一:观察图中各角与∠1之间的关系:
∠ADF+∠1=180
∠ADC+∠1=180
∠BDC+∠1=180
∠EDB+∠1=180
∠2=∠1
教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系。在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念。
提醒学生:互为余角、互为补角仅仅表明了两个角之间的度量关系,并没有对其位置关系作出限制。(为下面的对顶角的学习作铺垫)
让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论。鼓励学生用自己的语言表达,并说明理由。
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?它们的大小有什么关系?能试着说明理由吗?

由此引出对顶角的概念和“对顶角相等”的结论。
思考:如下图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角的度数是多少度吗?你的根据是什么?

小结:熟(1)余角、补角的概念。
(2)同角或等角的余角相等,同角或等角的补角相等。
(3)对顶角的概念和“对顶角相等”。
2.2探索直线平行的条件(1)
教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。
2、会认由三线八角所成的同位角
3、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题
教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”
教学难点:判断两直线平行的说理过程
教学方法:实践法
教学过程:
(一)课前复习:
(1)在同一平面内,两条直线的位置关系是
(2)在同一平面内,两条直线的是平行线
(二)创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
(三)新课:
1、动手操作移动活动木条,完成书中的做一做内容。
2、改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流。
3、由∠1与∠2的位置引出同位角的概念,如图∠1与∠2、∠5与∠6、∠7与∠8、∠3与∠4等都是同位角
练习:如图,哪些是同位角?

4、几何画板动画演示两直线平行的条件——同位角相等
5、例:找出下图中互相平行的直线,并说明理由。

(四)小结:本节课学习了两直线平行的条件是同位角相等,要特别注意数形结合。

2.2探索直线平行的条件(2)
教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
3、会用三角尺过已知直线外一点画这条直线的平行线。
教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学方法:观察讨论、归纳总结。
准备活动:
1、如图,a∥b,数一数图中有几个角(不含平角)

2、写出图中的所有同位角。

教学过程:
一、引入:
小明有一块小画板,他想知道它的上下边缘是否平行,
于是他在两个边缘之间画了一条线段AB(如图所示)。他
只有一个量角器,他通过测量某些角的大小就能知道这个
画板的上下边缘是否平行,你知道他是怎样做的吗?
定义:1、内错角;2、同旁内角。
二、探索练习:
观察三线八角,内错角的变化和同旁内角的变化,讨论:
(1)内错角满足什么关系时,两直线平行?为什么?
(2)同旁内角满足什么关系时,两直线平行?为什么?
★结论:内错角相等,两直线平行。
同旁内角互补,两直线平行。
三、巩固练习:
1、如右图,∵∠1=∠2
∴∥,
∵∠2=
∴∥,同位角相等,两直线平行
∵∠3+∠4=180°
∴∥,
∴AC∥FG,
2、如右图,∵DE∥BC
∴∠2=,
∴∠B+=180°,
∵∠B=∠4
∴∥,
∴+=180°,两直线平行,同旁内角互补
小结:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

2.3平行线的性质(1)
教学目的:1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点:1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程:
一、引入:
问:我们已经学习过平行线的哪些判定公理和定理?
答:1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
答:1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、新课;
平行线的性质一:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
怎样说明它的正确性呢?
方法一:通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二:从理论上给予严格推理论证.
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点O作直线A′B′使∠EOB′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.
∴∠1=∠2.
另证:(同一法)
过∠1顶点O作直线A′B′使∠E0B′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
∵AB∥CD(已知),且O点在AB上,O点在A′B′上,
∴A′B′与AB重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.
已知:如图2-33,直线AB、CD被EF所截,AB∥CD,
求证:∠3=∠2.
证明:∵AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
已知:如右图,直线AB、CD被EF所截,AB∥CD.
求证:∠2+∠4=180°.
证法一:∵AB∥CD(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:∵AB∥CD(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).
解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
2.4用尺规作线段和角(1)
教学目标:1、会用尺规作一条线段等于已知线段;并了解它们在尺规作图中的简单应用。
教学重点:1作一条线段等于已知线段。
2、作线段的和、差、倍数等。
教学难点:作线段的和、差。
教学方法:讲授法、讨论、总结。
教学过程:
一、新课:
提出问题:如何作一条线段等于已知线段?你有什么办法?
教师向学生详细的讲授尺规作图法。
作法示范
(1)作射线A′C′;
A′C′
(2)以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′。A′B′就是所作的线段。

A′B′C′

教师强调注意事项:
(1)解题前要写“解”;
(2)严格按作图要求操作;
(3)保留作图痕迹;
(4)下结论.
二、巩固练习:(一)用尺规作一条线段等于已知线段.已知:线段AB
AB
求作:线段A′B′,使得A′B′=AB.
(二)用尺规作一条线段等于已知线段的倍数:
已知:线段AB.
AB
求作:线段A′B′,使得A′B′=2AB.
(三)用尺规作一条线段等于已知线段的和:
(1)已知:线段a,bab

求作:线段AD,使得AD=a+b.

(2)已知:线段AB.CD.EF..
ABCDEF
求作:线段A′F′,使得A′F′=AB+CD+EF.
(四)用尺规作一条线段等于已知线段的差:
已知:线段AB.CD
ABCD
求作:线段A′D′,使得A′D′=AB-CD.
小结:(1)如何作一条线段等于已知线段,应该注意什么问题。
(2)如何作线段的和、差以及倍数。
2.4用尺规作角
教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识。
2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学难点:作图步骤和作图语言的叙述,及作角的综合应用。
教学方法:猜想、实践法
教学过程:
一问题的提出:
如图,要在长方形木板上截一个平行四边形,
使它的一组对边在长方形木板的边缘上,
另一组对边中的一条边为AB。
(1)请过点C画出与AB平行的另一条边
(2)如果你只有一个圆规和一把没有刻度的直尺,
你能解决这个问题吗?
二.新课:
内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)
(一)用尺规作一个角等于已知角.
(1)已知:∠AOB
求作:∠A′O′B′,使∠A′O′B′=∠AOB

(2)已知:∠
求作:∠AOB,使∠AOB=∠

(二)用尺规作一个角等于已知角的倍数:
(3)已知:∠1
求作:∠MON,使∠MON=2∠1
∠COD,使∠COD=3∠1

(三)用尺规作一个角等于已知角的和:
(4)已知:∠1、∠2、∠3

求作:①∠AOB,使∠AOB=∠1+∠2
②∠POQ,使∠POQ=∠1+∠2+∠3
③∠MON,使∠MON=2∠1+∠2

(四)用尺规作一个角等于已知角的差:
已知:∠、∠、∠
求作:①∠AOB,使∠AOB=∠-∠
②∠POQ,使∠POQ=∠-∠-∠
③求作一个角,使它等于2∠-∠

(五)综合练习:
(1)已知:线段AB、∠、∠
求作:分别过点A、点B作∠CAB=∠、∠CBA=∠

(2)如图,点P为∠ABC的边AB上的一点,过点P作直线EF//BC

(3)已知:直线L和L外一点P,
求作:一条直线,使它经过点P,并与已知直线L平行

(4)已知:△ABC
求作:直线MN,使MN经过点A,且MN//BC

(5)如图,以点B为顶点,射线BA为一边,在∠ABC外再作一个角,
使其等于∠ABC

(六)小结:今天我们学习了用尺规作一个角等于已知角,它是一个基本的作图方法。

初一数学下册第二章平行线与相交线导学案


2.3平行线的性质
一、学习目标
1、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索平行线特征的过程,掌握平行线的特征,并能解决一些问题。
二、学习重点
平行线的特征的探索
三、学习难点
运用平行线的特征进行有条理的分析、表达
四、学习过程
(一)预习准备
(1)预习书50-53页
(2)回顾:平行线有哪些判定方法?
(3)预习作业
1、如图,已知BE是AB的延长线,并且AD∥BC,AB∥DC,若,则度,度。
2、如图,当∥时,;
当∥时,;

(二)学习过程
例1如图,已知AD∥BE,AC∥DE,,可推出(1);(2)AB∥CD。填出推理理由。
证明:(1)∵AD∥BE()
∴()
又∵AC∥DE()
∴()
∴()
(2)∵AD∥BE()
∴()
又∵()
∴()
∴AB∥CD()
变式训练:如图,下列推理所注理由正确的是()
A、∵DE∥BC
∴(同位角相等,两直线平行)
B、∵
∴DE∥BC(内错角相等,两直线平行)
C、∵DE∥BC
∴(两直线平行,内错角相等)
D、∵
∴DE∥BC(两直线平行,同位角相等)

例2如图,已知AB∥CD,求的度数。

变式训练:如图,,已知AB∥CD,试说明

拓展:1、如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,的平分线与的平分线相交于点P,则,试说明理由。

2、如图,已知EF∥AB,CD⊥AB,,试说明DG∥BC。

回顾小结:
1、说说平行线的三个性质是什么?
2、平行线的性质与平行线的判定的区别:
判定:角的关系平行关系
性质:平行关系角的关系
3、证平行,用判定;知平行,用性质。
2.4用尺规作角
一、学习目标:1、会用尺规作一个角等于已知角。
二、学习重点:1、作一个角等于已知角。
2、作角的和、差、倍数等。
三、学习难点:作角的和、差、倍。
四、学习设计
(一)预习准备
(1)预习课本55-56页
(2)思考①什么叫尺规作图?②直尺的功能?圆规的功能?
(3)预习作业
利用尺规按下列要求作图
(1)延长线段BA至C,使AC=2AB
(2)延长线段EF至G,使EG=3EF
(3)反向延长MN至P,使MP=2MN
(二)学习过程
1、(1)只用没有的直尺和作图成为尺规作图。
(2)尺规作图时,直尺的功能是(1),(2)
圆规的功能是(1),(2)
例1下列说法正确的是()
A、在直线l上取线段AB=aB、做
C、延长射线OAD、反向延长射线OB
例2作图
(1)用尺规作一个角等于已知角.
已知:∠。求作:∠AOB,使∠AOB=∠

(2)用尺规作一个角等于已知角的倍数:
已知:∠1求作:∠MON,使∠MON=2∠1

(3)用尺规作一个角等于已知角的和:
已知:∠1、∠2、求作:∠AOB,使∠AOB=∠1+∠2
(4)用尺规作一个角等于已知角的差:
已知:∠1、∠2、求作:∠AOB,使∠AOB=∠2-∠1

回顾小结:常见作图语言:(1)作∠XXX=∠XXX。
(2)作XX(射线)平分∠XXX。
(3)过点X作XX⊥XX,垂足为点X。
第二章回顾与思考
全章知识回顾
1、概念:相交线、平行线、对顶角、余角、补角、邻补角、垂直、同旁内角、同位角、内错角、平行线。
2、公理:平行公理、垂直公理
3、性质:
(1)对顶角的性质;
(2)互余两角的性质;
互补两角的性质;
(3)平行线性质:两直线平行,可得出;

平行线的判定:或或
都可以判定两直线平行。
3、垂线段定理:
4、点到直线的距离:
7、辨认图形的方法
(1)看“F”型找同位角;
(2)看“Z”字型找内错角;
(3)看“U”型找同旁内角;
8、学好本章内容的要求
(1)会表达:能正确叙述概念的内容;
(2)会识图:能在复杂的图形中识别出概念所反映的部分图形;
(3)会翻译:能结合图形吧概念的定义翻译成符号语言;
(4)会画图:能画出概念所反映的几何图形及变式图形,会在图形上标注字母和符号;
(5)会运用:能应用概念进行判断、推理和计算。
例1已知,如图AB∥CD,直线EF分别截AB,CD于M、N,MG、NH分别是的平分线。试说明MG∥NH。

例3已知,如图AB∥EF,,试判断BC和DE的位置关系,并说明理由。

变式训练:
1、下列说法错误的是()
A、是同位角B、是同位角
C、是同旁内角D、是内错角

2、已知:如图,AD∥BC,,求证:AB∥DC。

证:∵AD∥BC(已知)
∴()
又∵(已知)
∴()

∴AB∥DC()

几何书写训练
1、已知:如图,AB∥CD,直线EF分别截AB、CD于M、N,MG、NH分别是的平分线。求证:MG∥NH。
证明:∵AB∥CD(已知)
∴=()
∵MG平分(已知)
∴==()
∵NH平分(已知)
∴==()
∴=()
∴=()
2、已知:如图,
证明:∵AF与DB相交(已知)
∴=()
3、已知:如图,AB∥EF,.求证:BC∥DE
证明:连接BE,交CD于点O
∵AB∥EF(已知)
∴=()
∵(已知)
∴—=—()
∴=()
∴∥()
4、已知:如图,CD⊥AB,垂足为D,点F是BC上任意一点,EF⊥AB,垂足为E,且,,求的度数。
解:∵CD⊥AB,EF⊥AB(已知)
∵(已知)
∴()
5、如图,已知。
推理过程:∵()
(已知)

6、已知AB∥CD,EG平分,FH平分,试说明EG∥FH。
推理过程:∵AB∥CD(已知)
∴=()
∵EG平分,FH平分()
∴,()
∴()
∴EG∥FH()

7、如图,已知AB⊥BC,BC⊥CD,,试说明BE∥CF。
推理过程:∵AB⊥BC,BC⊥CD()
∴()

又∵()
∴()
∴BE∥()

8、如图,BE∥CD,,试说明
推理过程:∵BE∥CD()
∴()
∵(已知)
∴()
∴BC∥()
∴()

9、如图,DE⊥AO于E,BO⊥AO,FC⊥AB于C,,试说明OD⊥AB。
推理过程:∵DE⊥AO,BO⊥AO(已知)
∴DE∥()
∴()
∴()
∴OD⊥AB()

10、如图,BE平分,DE平分,DG平分,且,试说明BE∥DG.

推理过程:∵BE平分,DE平分()
∴,()
∵(已知)
∴=180°
∴∥()
∴()
∵DG平分(已知)
∴()
∴()

七年级数学上册第二章2.1整式(人教版)


第二章整式的加减
2.1整式
第1课时用字母表示数

1.在现实情境中进一步理解用字母表示数的意义,让学生在探索现实世界数量关系的过程中,建立符号意识.(重点)
2.领会用字母表示数时数量关系的一种抽象化,是代数的一个重要特点.(难点)

阅读教材P54~56,思考下列问题.
如何用字母表示数.
自学反馈
1.我们常用字母t表示行驶的时间,在小学列方程解应用题时,用字母x表示未知数.
2.用字母表示:
(1)有理数减法法则:a-b=a+(-b);
(2)有理数除法法则:a÷b=a1b(b≠0).
3.客车每小时行v千米,t小时行的路程为vt千米.
4.一本名著有a页,王红读了b天,还剩c页未读,王红平均每天读了a-cb页.

活动1小组讨论
例1用字母表示加法的结合律和乘法的分配律.
解:加法结合律:(a+b)+c=a+(b+c);
乘法分配律:(a+b)c=ac+bc.
例2为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼比赛”.如图所示:
按照上面的规律,摆n条“金鱼”需用火柴棒的根数为(A)
A.2+6nB.8+6nC.4+4nD.8n
活动2跟踪训练
1.今天中午气温为18℃,晚上下降了a℃,则晚上气温为(18-a)℃.
2.衬衫原价每件x元,若按6折出售,则现在的售价为每件0.6x元.
3.七年级一班全班同学合影,第1排站b个人,以后每排都比前一排多2人,那么第3排站(b+4)人,第n排站b+2(n-1)人.
4.一个两位数,十位数为m,个位数为2,则这个两位数为10m+2.
5.如图,下面图形的周长是2a+2b.
6.找规律,填一填.
摆1个这样的三角形需要3根小棒,
摆2个这样的三角形需要5根小棒,
摆3个这样的三角形需要7跟小棒,
摆4个这样的三角形需要9根小棒,
……
摆11个这样的三角形需要23根小棒,
摆n个这样的三角形需要(2n+1)根小棒.
活动3课堂小结
如何用字母表示数,用字母表示数时需要注意些什么.

第2课时单项式

1.理解单项式、单项式的系数、单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数.
2.初步学会观察、对比、归纳的方法;发展学生的观察能力、思维能力及分析能力.

阅读教材P56~57,思考下列问题.
1.单项式、单项式的系数及单项式的次数的概念.
2.区别单项式的系数和次数.
知识探究
1.由数与字母或字母与字母相乘组成的代数式叫单项式.
2.单项式中的数字因数叫单项式的系数.
3.单项式中所有字母的指数的和叫单项式的次数.
自学反馈
1.在式子1,a2,a-b,y,15x,1x中,是单项式的有1,a2,y,15x.
2.(1)-a的系数是-1,次数是1;
(2)单项式-3x2的系数是-3,次数是2;
(3)2ab3c3的系数是23,次数是5.
3.下列说法正确的是(C)
A.x不是单项式B.x+2y是单项式
C.-x的系数是-1D.0不是单项式
(1)当一个单项式的系数是1或-1时,通常省略不写,如a2bc,-abc等;(2)单项式的系数是带分数时,通常写成假分数,如134x2y写成74x2y.

活动1小组讨论
例1用单项式表示下列各式.
(1)边长为x的正方形的周长为4x;
(2)一辆汽车的速度是v千米∕时,行驶t小时所走过的路程为vt千米.
(3)王洁同学买2本练习本花了n元,那么买m本练习本要mn2元.
(4)如图所示,边长为a的正方体的表面积为6a2,体积为a3.
例2找出下列各式中的单项式,并写出各单项式的系数和次数.
23a,5a+2b,-y,z5x7,abc,-18a2b,-x2yz2bc.
解:23a,-y,z5x7,-18a2b.
其中23a的系数为23,次数为1;
-y的系数为-1,次数为1;
z5x7的系数为1,次数为12;
-18a2b的系数为-18,次数为3.
活动2跟踪训练
1.如果单项式-xymzn和5a4bn都是五次单项式,那么m、n的值分别为(D)
A.2,3B.3,2
C.4,1D.3,1
2.下列说法中正确的是(D)
A.0不是单项式B.-3abc2的系数是-3
C.-23x2y23的系数是-13D.πab2的次数是2
4.同时含有a、b、c且系数为1的5次单项式是哪些?
解:a2b2c,a2bc2,ab2c2,a3bc,ab3c,abc3.
5.球的表面积等于π与球半径的平方的积的4倍;球的体积等于π与球半径的立方的积的43.(用单项式表示)
解:4πr2,43πr3.
3.下列各式:①123ab;②x2;③30%a;④m-2;⑤3x2-y2.其中不符合代数式书写要求的有(D)
A.5个B.4个C.3个D.2个
活动3课堂小结
1.字母表示数.
2.单项式的概念.
3.单项式的系数及次数的概念.
第3课时多项式及整式
1.使学生理解多项式、整式的概念,会准确确定一个多项式的项和次数.
2.通过实例列整式,培养学生分析问题、解决问题的能力.
3.培养学生积极思考的学习态度、合作交流的意识,了解整式的实际背景,进一步感受字母表示数的意义.

阅读教材P57~58,思考下列问题.
1.多项式及有关概念.
2.准确确定多项式的次数和项.
知识探究
1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.
2.单项式和多项式统称为整式.
自学反馈
1.多项式3x2y-4xy-1由单项式3x2y,-4xy,-1组成,它是三次三项式,其中二次项是-4xy,常数项是-1.
2.多项式-m2n2+m3-2n-3是四次四项式,最高次项的系数为-1,常数项是-3.
3.多项式3a3-14中,常数项是(D)
A.1B.-1C.14D.-14
4.多项式13a2b-16是(B)
A.二次二项式B.三次二项式
C.一次二项式D.三次三项式

活动1小组讨论
例1先填空,再分析写出的式子有什么特点?与你的同伴交流.
(1)减肥后,体重由80千克下降了n千克,是(80-n)千克;
(2)买一本练习本需要x元,买一支中性笔需要y元,买一块橡皮需要z元,买4本练习本,5支中性笔,2块橡皮共需要(4x+5y+2z)元.
例2指出下列多项式的次数与项:
(1)23xy-14;
(2)a2+2a2b+ab2-b2;
(3)2m3n3-3m2n2+53mn.
解:(1)2次,23xy,-14.
(2)3次,a2,2a2b,ab2,-b2.
(3)6次,2m3n3,-3m2n2,53mn.
活动2跟踪训练
1.下列说法中正确的有(A)
①单项式-12πx2y的系数是-12;
②多项式a+3b+ab是一次多项式;
③多项式3a2b3-4ab+2的第二项是4ab;
④2x2+1x-3是多项式.
A.0个B.1个C.2个D.3个
2.把下列各式填在相应的集合里.
①0.②x2;③-x2-2x+5;④94;⑤xy.⑥8+b7;⑦-5;⑧x+y5.
整式:{①②③④⑤⑥⑦⑧…}
多项式:{③⑥⑧…}
单项式:{①②④⑤⑦…}
3.指出下列多项式的项和次数.
(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.
解:(1)a3,-a2b,ab2,-b3,3次.(2)3n4,-2n2,1,4次.
4.指出下列多项式是几次几项式:
(1)x3-x+1;(2)x3-2x2y2+3y2.
解:(1)三次三项式.(2)四次三项式.
活动3课堂小结
1.多项式的概念.
2.项、常数项、多项式的次数.

文章来源:http://m.jab88.com/j/24970.html

更多

最新更新

更多