88教案网

七年级上册《有理数》学案

老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“七年级上册《有理数》学案”,欢迎阅读,希望您能够喜欢并分享!

七年级上册《有理数》学案

有理数
教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题
2,教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

扩展阅读

七年级上册《有理数的加法》教案


老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“七年级上册《有理数的加法》教案”,大家不妨来参考。希望您能喜欢!

七年级上册《有理数的加法》教案

教学

目标

1.掌握有理数加法法则,并能运用法则进行计算;

2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。


分析重点有理数加法法则。
难点异号两数相加的法则。
教具电脑、投影仪


一、创设情境、引入问题
两个有理数相加,有多少种不同的情形?

二、师生共同研究有理数加法法则
实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②
请同学们说出其他可能的情形.
上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③
上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;⑥
上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.(7)

问题:观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
明晰有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数.

三、应用、拓展
例1计算下列算式的结果,并说明理由:
(1)、(-3)+(-9);(2)、(+4)+(+7);(3)、(+4)+(-7);(4)、180+(-10);(5)、(+4)+(-4);
(6)、(-10)+(-1);(7)、5+(-5);(8)、(+9)+0;(9)、0+(-2).
小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
练一练:1、课本第36页1题;
2、计算:(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)33+48;(8)(-56)+37.

四、反思小结1.从实例出发,经过比较、归纳,得出了有理数加法的法则;2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.

五、作业
思考:用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b______0;(2)如果a<0,b<0,那么a+b______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b__0;(4)如果a<0,b>0,|a|>|b|,那么a+b_0.

布置作业习题2.4第1、2题

教学后记本节课内容较为简单,学生掌握良好,课上反应热烈。

新人教版七年级上1.2.1有理数


1.2.1有理数

[教学目标]

1.正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3.体验分类是数学上的常用的处理问题的方法.[教学重点与难点]

重点:正确理解有理数的概念.难点:正确理解分类的标准和按照定的标准进行分类.


[教学设计]

[设计说明]
一.知识回顾和理解

通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?.(3名学生板书)[问题1]:我们将这三为同学所写的数做一下分类.(如果不全,可以补充).[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?二.明确概念探究分类

正整数、0、负整数统称整数,正分数和负分数统称分数.

整数和分数统称有理数

[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?三.练一练熟能生巧

1.任意写出三个数,标出每个数的所属类型,同桌互相验证.2.把下列各数填入它所属于的集合的圈内:15,-,-5,,,0.1,-5.32,-80,123,2.333.
正整数集合负整数集合

正分数集合负分数集合

每名学生都参照前一名学生所写的,尽量写不同类型的,最后有下面同学补充.

在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决.

教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出.

在练习2中,首先要解释集合的含义.

练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)

[小结]

到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.

[作业]

必做题:教科书第18页习题1.2:第1题.

作业2.把下列给数填在相应的大括号里:

-4,0.001,0,-1.7,15,.

正数集合{…},负数集合{…},

正整数集合{…},分数集合{…}

[备选题]

1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

+7,-5,,,79,0,0.67,,+5.1

2.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?

正数集合整数集合

这里可以提到无限不循环小数的问题.并特殊指明我们以前所见到的数中,只有π是一个特殊数,它不是有理数.但3.14是有理数.

作业2意在使学生熟悉集合的另一种表示形式.

利用此题明确自然数的范围.0是自然数.这点可以在前面的教学中出现.

3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数.

七年级数学上册《有理数》教学设计


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“七年级数学上册《有理数》教学设计”,供您参考,希望能够帮助到大家。

七年级数学上册《有理数》教学设计

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:会把所给的各数填入它所属于的集合里

教学方法:问题引导法

学习方法:自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

(1)将上面的数填入下面两个集合:正整数集合{},负整数集合{},填完了吗?

(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.__________统称为有理数,

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{…}负数集合:{…}

正整数集合:{…}负分数集合:{…}

4.下列说法正确的是()

A.0是最小的正整数

B.0是最小的有理数

C.0既不是整数也不是分数

D.0既不是正数也不是负数

5、下列说法正确的有()

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

文章来源:http://m.jab88.com/j/24965.html

更多

最新更新

更多