88教案网

每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“代数式的值”,相信能对大家有所帮助。

2.3代数式的值
【教学目标】
知识与技能
1.让学生领会代数式值的概念.
2.了解求代数式值的解题过程及格式.
3.初步领悟代数式的值随字母的取值变化而变化的情况.
过程与方法
通过学习使学生了解求代数式的值在日常生活中的应用.
情感态度
培养学生的探索精神和探索能力.
教学重点
求代数式的值的含义及如何求代数式的值.
教学难点
求代数式的值的含义理解及一些应用.
【教学过程】
一、情景导入,初步认知
通过上节课的学习,我们了解了什么?它的概念是什么?
【教学说明】通过复习最近学过的知识,使学生尽快进入学习状态.
二、思考探究,获取新知
1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有的同学每人植树a棵,其余同学植树2棵.你用代数式表示他们共植树的总棵数吗?
如果a=3,那么他们共植树多少棵?
如果a=4,那么他们共植树又是多少棵?
根据题意,他们共植树:
×305a+(1-)×305×2
=(122a+366)棵;
当a=3时,代数式122a+366=122×3+366=732(棵);
当a=4时,代数式122a+366=122×4+366=854(棵);
我们将上面问题中的计算结果732和854,称为代数式122a+366当a=3和当a=4时的值.
【归纳结论】如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.
注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时”,一定要按照代数式指明的运算进行.
(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a+366中的字母a不能取负数,又如代数式中的字母b不能取零.
2.思考:结合上述例题,回答下列问题:
(1)求代数式的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
【教学说明】引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.
3.(1)当x=-3时,求出代数式x2-3x+5的值;
(2)当a=0.5,b=-2时,求的值;
(3)当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.
【教学说明】点拨:(1)注意书写格式,“当……时”的字样不要丢;(2)代数式中的乘法运算,当其中的字母用数字在替代时,要恢复“×”号;(3)要按照代数式指明的运算顺序进行计算;(4)如果字母的值是负数,代入时应将负数加上括号;如果字母的值是分数,就要计算它的平方、立方,代入时应将分数加上括号;(5)只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值和它对应.
三、运用新知,深化理解
1.教材P64例2.
2.判断题:
①当x=时,3x2=3()2=3;
②当x=-2时,3x2=3-42=-1.
答案:错,错.
3.(1)若x+1=4,则(x+1)2=;
(2)若x+1=5,则(x+1)2-1=.
答案:16;24.
4.当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.M.jab88.COm

5.当a=2,b=-1,c=-3时,求下列各代数式的值;
(1)b2-4ac;
(2)a2+b2+c2+2ab+2bc+2ac;
(3)(a+b+c)2.
解:(1)当a=2,b=-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25
(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4
(3)当a=2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.
6.若x+2y2+5的值为7,求代数式3x+6y2+4的值.
分析:比较x+2y2与3x+6y2之间的异同,从而找到关键点进行解题.
解:由已知x+2y2+5=7,则x+2y2=2
∴3x+6y2+4=3(x+2y2)+4=3×2+4=10.
7.已知a+b=3,求代数式(a+b)2+a+5+b的值.
解:(a+b)2+a+5+b
=(a+b)2+(a+b)+5
因为a+b=3,
所以(a+b)2+(a+b)+5
=32+3+5
=17
8.对于正数,运算“*”定义为a*b=,求3*(3*3).
分析:这里“*”告诉我们一个运算关系,a*b=,就是说:数*数=,按这个运算求3*(3*3).
解:因为a*b=
所以3*(3*3)===1
9.某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?
分析:今年的产值为(1+10%)a,明年的产值为(1+10%)2a.
解:由题意可得,今年的年产值为(1+10%)a亿元,于是明年的年产值为(1+10%)2a=1.21a(亿元)
若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2=2.42(亿元).
答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预测明年的年产值是2.42亿元.
【教学说明】通过巩固训练,让学生学会求代数式的值的方法.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
【课后作业】
布置作业:教材“习题2.3”中第2、3、5题.

相关推荐

代数式值集体备课教案


作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“代数式值集体备课教案”,大家不妨来参考。希望您能喜欢!

数学课时授课计划
授课时间:2012年月日执教者:
课题代数式值课时1第1课时课型教学设计者
教学
目标1.让学生领会代数式值的概念;
2.了解求代数式值的解题过程及格式
3.初步领悟代数式的值随字母的取值变化而变化的情况
教学
重点培养学生的探索精神和探索能力。教学
难点通过学习使学生了解求代数式的值在日常生活中的应用;
教学
方法启发式教学
教学
用具
教学过程集体备课稿个案补充
新课引入
2001年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表:北京时间莫斯科时间
提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?
如果用表示莫斯科时间,那么同一时刻的北京时间是多少?
学生回答:+5
进一步提出:国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权的北京时间是多少?
学生回答:+5=17+5=22时,即北京时间为22:08。
一、新课过程
代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;例如22是代数式+5在=17时的值。
做一做:右图表示同一时刻的东京时间与北京时间:东京时间北京时间
⑴、你能根据右图知道北京与东京的时差吗?
⑵、设东京时间为,怎样用关于东京时间的代数式表示同一时刻的北京时间。
⑶、2002年世界杯足球赛于6月30日在日本横滨举行,开幕式开始的东京时间为20:00问开幕式开始的北京时间是几时?
二、课内练习
1、当分别取下列值时,求代数式的值:⑴⑵
2、当时,求下列代数式的值:⑴⑵
3、当时,。
三、典例分析
例1当n分别取下列值时,求代数式n(n-1)/2的值:
(1)n=-1(2)n=4(3)n=0.6
解(1)当n=-1时,n(n-1)/2=(-1)X(-1-1)/2=1
(2)当n=4时,n(n-1)/2=4X(4-1)/2=6
(3)当n=0.6时,n(n-1)/2=0.6X(0.6-1)/2=-0.12
注意:负数代入求值时要括号,分数的乘方也要添上括号。

四、课堂练习1
1、当x分别取下列值时,求代数式20(1+x%)的值:
(1)x=40(2)x=25
2、当x=-2,y=-1/3时,求下列代数式的值:
(1)3y-x(2)|3y+x|
3、当x分别取下列值时,求代数式4-3x的值:
(1)x=1(2)x4/3(3)x=-5/6
4、当a=3,b=-2/3时,求下列代数式的值:
(1)2ab(2)a2+2ab+b2

五、典例分析
例2

小结、布置作业

教学
反思
改进
建议

5.4代数式的值


5.4代数式的值
教学目标:
知识与技能:会求代数式的值。
过程与方法:通过求代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系。
情感态度与价值观:通过代数式求值,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感。
教学重点:1.会求代数式的值;
2.理解字母表示数的意义,增强符号感。
教学难点:求代数式的值。
教材分析:本节课为初中代数的重点内容,通过代数式的求值,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,增强符号感。由于代数式的值是由代数式里的字母的值决定的,因此在设计教学的过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。
教学方法:讲练结合法。
教学用具:电脑、投影仪、课件资源、投影片
课时安排:1课时
教学过程:
环节教师活动学生活动设计意图



境活动1
上节课研究的由点组成的空心方阵的问题,空心方阵的每一条边上的点数为n时,方阵点数为4n-4。
请同学们想一想,n=4是什么意思?
当n=4时,空心方阵共有多少点?

学生回答,教师点评,并给予鼓励。

通过实际问题,感受字母表示数的实际意义。
引导
自学请同学们做课本“一起探究”和“做一做”(P154)学生解答,教师巡回指导。
引导学生认识代数式规定了运算。
使学生体会代数式规定了运算。

流用数值代替代数式中的字母,按照代数式中给出的运算计算出的结果,叫做求代数式的值。给出代数式的值的定义。学习代数式的值的定义。
例根据下面a,b的值,求代数式的值.
⑴a=2,b=-6;
⑵a=-10,b=4.
解:⑴当a=2,b=-6时
=
=2+3
=5
尽可能让学生先想、先说、先做,然后再由学生进行演算(并有板演的)再对学生的书写格式进行规范。
教师边解边讲每一个步骤的作用。学习求代数式的值的步骤.目的是规范代数式求值的书写过程。
⑵(略)师生共同完成。



新活动3
大家看,求代数式的值包括几步?
共有四个步骤:
⑴指出字母的值;
⑵抄写代数式;
⑶替换字母;
⑷计算结果。
学生总结,教师指导。

可简记为:指、抄、替、算。总结求代数式的值的一般步骤。



兵请同学们做课后练习(P155)1、2两题。学生解答,教师指导。
可找学生板演,或展台展示。

巩固求代数式的值的步骤。
布置作业课后习题(P155)1题——5题。

板书设计:
5.4代数式的值
代数式的值:概念略
例题:(1)、(2)

练习:1、2、
教学反思:
本节课讲练结合整体效果较好,讲课的环节紧凑,例题点型,练习题精练。学生在老师的启发下,积极开展讨论合作,同时积极配合教师,顺利完成本节课的教学任务。但整体看这节课还应强调两点:1、一个代数式可以看成是一种计算程序。2、强调规范代数式求值的书写过程。

列代数式


每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“列代数式”但愿对您的学习工作带来帮助。

课题列代数式课型新授课
教育教学目标
(知识与能力、过程与方法、情感与态度、价值观)1.使学生能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力.
教学重

点难点重点:把实际问题中的数量关系列成代数式.
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式.
教学策略及创造性教学设计
(教法选择、学法指导、课堂组织形式、教具媒体应用、课程资源开发利用等)
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础.同时,也使学生的抽象思维能力得到初步的培养.
布置

作业
家作1:第93页的6、7。练习册:订正、补充完成第51—54页。完成周练八,须家长签名。订正第三章家作本及其练习册的错题。预习:课本第94—97页
教学反馈
(形成性评价设计、总结性评价设计)警示误区:
假如式子后面有单位,整个式子要加括号;
数与字母相乘,要把数字写在前面;
不同的对象用不同的字母表示;
先读的先写,先分析数量关系,要注意运算顺序。

教学内容、过程安排
(包括德育渗透、教学方法、教学手段、学法指导等)分析、评价
反思、体会
一、从学生原有的认知结构提出问题
1.用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(4)乙数比x大16%.((1+16%)x)
(应用引导的方法启发学生解答本题)
2.在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式.本节课我们就来一起学习这个问题.
二、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;
(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;
(4)乙数比甲数大16%.
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数.
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x

教学内容、过程安排
(包括德育渗透、教学方法、教学手段、学法指导等)分析、评价
反思、体会
解:设甲数为x,则乙数的代数式为
例2用代数式表示:
(1)甲乙两数和的2倍;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积.
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式.
解:设甲数为a,乙数为b,则
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a).
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律.但a与b的差指的是(a-b),而b与a的差指的是(b-a).两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序.
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数.
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2.
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备).
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;
(3)这个数的5倍与7的和的一半;
分析:启发学生,做分析练习.如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”列成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”.

通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
三、课堂练习
1.设甲数为x,乙数为y,用代数式表示:(投影)
(3)甲乙两数之积与甲乙两数之和的差;
(4)甲乙的差除以甲乙两数的积的商.
2.用代数式表示:
(1)比a与b的和小3的数;
(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;
(4)比a除b的商的3倍大8的数.
3.用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
四、师生共同小结
首先,请学生回答:
1.怎样列代数式?2.列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备.要求学生一定要牢固掌握.
五、布置作业

文章来源:http://m.jab88.com/j/9158.html

更多
上一篇:有理数导学案 下一篇:2020精彩的马戏

最新更新

更多