88教案网

高考物理第一轮电磁感应中的图象与能量问题复习学案

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是教师的任务之一。教案可以让学生更好地进入课堂环境中来,让教师能够快速的解决各种教学问题。关于好的教案要怎么样去写呢?下面是小编为大家整理的“高考物理第一轮电磁感应中的图象与能量问题复习学案”,相信能对大家有所帮助。

第五课时电磁感应中的图象与能量问题

【教学要求】

1.理解电磁感应的过程实质就是能量转化的过程,学会从能量的角度分析电磁感应问题。

2.学会分析电磁感应中的图象问题

【知识再现】

一、电磁感应中的图象问题

电磁感应中常涉及磁感应强度B、磁通量ф、感应电动势E和感应电流I随时间t变化的图像,即B-t图像,ф-t图像。E-t图像和I-t图像。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像.

这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量.

二、电磁感应中能量转化问题

电磁感应过程总是伴随着能量转化。导体切割磁感线或磁通量发生变化在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能。

因此,中学阶段用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀变速运动).对应的受力特点是合外力为零或者恒定不变,能量转化过程常是机械能转化为电阻内能.

知识点一电磁感应中的能量转化规律

电磁感应现象中出现的电能,一定是由其他形式的能转化而来,具体问题中会涉及多种形式的能之间的转化,机械能和电能的相互转化、内能和电能的相互转化.分析时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能(发电机),做正功将电能转化为其他形式的能(电动机);然后利用能量守恒列出方程求解。

【应用1】光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,一根质量为m的导体棒ab,用长为l的绝缘细线悬挂,悬线竖直时导体棒恰好与导轨良好接触且细线处于张紧状态,如图所示,系统空间有匀强磁场.当闭合开关S时,导体棒被向右摆出,摆到最大高度时,细线与竖直方向成角,则()

A.磁场方向一定竖直向下

B.磁场方向竖直向下时,磁感应强度最小

C.导体棒离开导轨前通过棒的电量为

D.导体棒离开导轨前电源提供的电能大于

mgl(1–cos)

导示:选择:BD。当开关S闭合时,导体棒向右摆起,说明其所受安培力水平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B正确;M.jaB88.COM

设导体棒右摆初动能为Ek,摆动过程中机械能守恒,有Ek=mgl(1–cos),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动能。

此时有W=IEt=qE=Ek,得W=mgl(1–cos),,题设条件有电源内阻不计而没有“其他电阻不计”的相关表述,因此其他电阻不可忽略,那么电流的功就大于mgl(1–cos),通过的电量也就大于,C错D正确.

类型一电磁感应中的图象问题分析

电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)是否大小恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负。

分析回路中的感应电动势和感应电流的大小及其变化规律,要利用法拉第电磁感应定律来分析.有些图像问题还要画出等效电路来辅助分析,

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断,这样,才抓住了解决图像问题的根本。

【例1】(如东高级中学08届高三第三次阶段测试)如图甲所示,两个垂直纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a,一正三角形(高度为a)导线框ABC从图示位置沿图示方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在图乙中感应电流I与线框移动距离x的关系图象正确的是()

导示:导线框进入左边磁场时,切割磁感应线的有效长度L=2vttan30°,与时间成正比。根据楞次定律可以判定,导线框进入左边磁场和离开右边磁场时,电路中的感应电流方向为逆时针方向。导线框在穿越两个磁场过程中,电路中的感应电流方向为顺时针方向。

类型二电磁感应中的能量问题的分析

解决电磁感应中的能量问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;

(2)画出等效电路,求出回路中电阻消耗电功率表达式;

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

【例2】(上海徐汇区08届高三第一学期期末试卷)(14分)如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距为L=1m,定值电阻R1=4Ω,R2=2Ω,导轨上放一质量为m=1kg的金属杆,导轨和金属杆的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下,现用一拉力F沿水平方向拉杆,使金属杆由静止开始运动。图乙所示为通过R1中的电流平方随时间变化的I12—t图线,求:

(1)5s末金属杆的动能;

(2)5s末安培力的功率;

(3)5s内拉力F做的功。

导示:(1)E=BLv=I1R1,

v=I1R1BL=0.240.81m/s=50.2m/s,

Ek=12mv2=2.5J;

(2)I=3I1=30.2A,

PA=I12R1+I22R2=3I12R1=2.4W

或FA=BIL=2.40.2N,PA=FAv=2.4W;

(3)由PA=3I12R1和图线可知,PAt,所以

WA=12PAmt=6J;

(或根据图线,I12t即为图线与时间轴包围的面积,所以WA=3I12R1t=3×12×5×0.2×4=6J)

又WF-WA=Ek,得WF=WA+Ek=8.5J。

1.(盐城中学08届高三年级12月份测试题)如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。一导线框abcdef位于纸面内,况的邻边都相互垂直,bc边与磁场的边界P重合。导线框与磁场区域的尺寸如图所示。从t=0时刻开始,线框匀速横穿两个磁场区域。以a→b→c→d→e→f为线框中的电动势ε的正方向,以下四个ε-t关系示意图中正确的是()

2.(南通海安实验中学08年1月考试卷)如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,用水平恒力F把MN棒从静止起向右拉动的过程中,()

A、恒力F做的功等于电路产生的电能;

B、恒力F和摩擦力的合力做的功等于电路中产生的电能;

C、克服安培力做的功等于电路中产生的电能;

D、恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和

3、(上海徐汇区08届高三第一学期期末试卷)如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿越磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止)()

A、感应电流所做的功为mgd

B、感应电流所做的功为2mgd

C、线圈的最小速度可能为mgRB2L2

D、线圈的最小速度一定为2g(h+L-d)

4、(泰州市08届高三联考热身训练)如图所示,相距为L的两根竖直的足够长的光滑导轨MN、PQ,M、P之间接一阻值为R的定值电阻,金属棒ab质量为m,与导轨接触良好。整个装置处在方向垂直纸面向里水平匀强磁场中,金属棒和导轨电阻不计。现让ab棒由静止释放,经时间t达稳定状态,此时ab棒速度为v;

(1)请证明导体棒运动过程中,克服安培力的功率等于电路中电功率。

(2)若m=0.2kg,L=0.5m,R=lΩ,v=2m/s,棒从开始释放到稳定状态过程中流过棒电量为0.5C,求磁感应强度B大小以及棒从开始到达到稳定状态下落的高度h。(g取10m/s2)

(3)接第(2)问,若棒从开始到达到稳定状态所用时间t=2s,求流过电阻R的电流有效值。(结果可保留根号)

答案:1、C2、CD3、BCD

4、(1)略;(2)0.5m;(3)A

延伸阅读

高考物理第一轮电磁感应复习学案


第九章电磁感应

1、电磁感应属于每年重点考查的内容之一,试题综合程度高,难度较大。
2、本章的重点是:电磁感应产生的条件、磁通量、应用楞次定律和右手定则判断感应电流的方向、感生、动生电动势的计算。公式E=Blv的应用,平动切割、转动切割、单杆切割和双杆切割,常与力、电综合考查,要求能力较高。图象问题是本章的一大热点,主要涉及ф-t图、B-t图、和I-t图的相互转换,考查楞次定律和法拉第电磁感应定律的灵活应用。
3、近几年高考对本单元的考查,命题频率较高的是感应电流产生的条件和方向的判定,导体切割磁感线产生感应电动势的计算,电磁感应现象与磁场、电路、力学等知识的综合题,以及电磁感应与实际相结合的问题,如录音机、话筒、继电器、日光灯的工作原理等.

第一课时电磁感应现象楞次定律

【教学要求】
1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。
【知识再现】
一、电磁感应现象—感应电流产生的条件
1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.
2、条件:①____________;②____________.
二、感应电流方向——楞次定律
1、感应电流方向的判定:方法一:右手定则;方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、掌握楞次定律,具体从下面四个层次去理解:
①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.
③如何阻碍——原磁通量增加时,感应电流磁场方向与原磁场方向相反;当原磁通量减少时,感应电流磁场方向与原磁场方向相同,即“增反减同”.
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.
知识点一磁通量及磁通量的变化
磁通量变化△ф=ф2-ф1,一般存在以下几种情形:
①投影面积不变,磁感强度变化,即△ф=△BS;
②磁感应强度不变,投影面积发生变化,即△ф=B△S。其中投影面积的变化又有两种形式:
A.处在磁场的闭合回路面积发生变化,引起磁通量变化;
B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.
③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B△S。
【应用1】如图所示,平面M的面积为S,垂直于匀强磁场B,求水平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量。
导示:初位置时穿过M的磁通量为:ф1=BS;
当平面M转过60°后,磁感线仍由下向上穿过平面,且θ=60°所以ф2=BScos60°=BS/2。
当平面转过180°时,原平面的“上面”变为“下面”,而“下面”则成了“上面”,所以对平面M来说,磁感线穿进、穿出的顺序刚好颠倒,为了区别起见,我们规定M位于起始位置时其磁通量为正值,则此时其磁通量为负值,即:ф3=-BS
由上述得,平面M转过60°时其磁通量变化为:
△ф1=│ф2-ф1│=BS/2
平面M转过180°时其磁通量变化为:
△ф2=│ф3-ф1│=2BS。
1、必须明确S的物理意义。
2、必须明确初始状态的磁通量及其正负(一定要注意在转动过程中,磁感线相对于面的穿入方向是否发生变化)。
3、注意磁通量与线圈匝数无关。

知识点二安培定则、左手定则、右手定则、楞次定律的比较
(1)应用现象
(2)应用区别:关键是抓住因果关系
①因电而生磁(I→B)→安培定则
②因动而生电(v、B→I安)→右手定则
③因电而受力(I、B→F安)→左手定则
【应用2】如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()
A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势
C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点
导示:选择BD。在图中ab棒和右线圈相当于电源。当导体棒向右匀速运动时,根据右手定则,可以判断b点电势高于a点,此时通过右线圈在磁通量没有变化,所以,右线圈中不产生感应电流,c点与d点为等电势。
当金属棒向右加速运动时,b点电势高于a点,此时通过右线圈在磁通量逐渐增大,根据楞次定律可以判定d点电势高于c点。

类型一探究感应电流产生的条件
【例1】如图,在通电直导线A、B周围有一个矩形线圈abcd,要使线圈中产生感应电流,你认为有哪些方法?
导示:当AB中电流大小、方向发生变化、abcd线圈左右、上下平移、或者绕其中某一边转动等都可以使线圈中产生感应电流。

类型二感应电流方向的判定
判定感应电流方向的步骤:
①首先明确引起感应电流的原磁场方向.
②确定原磁场的磁通量是如何变化的.
③根据楞次定律确定感应电流的磁场方向——“增反减同”.
④利用安培定则确定感应电流的方向.
【例2】如图所示,导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线时,线圈中感应电流的方向是()
A.先abcd后dcba,再abcd
B.先abcd,后dcba
C.始终dcba
D.先dcba,后abcd,再dcba
导示:选择D。当线圈由左向右匀速通过直导线时,穿过线圈的磁通量先向外增大,当导线位于线圈中间时磁通量减小为O;然后磁通量先向里增大,最后又减小到O。

类型三楞次定律推论的应用
楞次定律的“阻碍”含义,可以推广为下列三种表达方式:
①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”
②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”
③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。
【例3】如图所示,光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A、P、Q将互相靠拢
B、P、Q将互相远离
C、磁铁的加速度仍为g
D、磁铁的加速度小于g
导示:方法一:设磁铁下端为N极,如图所示,根据楞次定律可判断P、Q中的感应电流方向。根据左手定则可判断P、Q所受安培力的方向。可见P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果。所以,本题应选A、D。
方法二:根据楞次定律知:“感应电流的磁场总要阻碍原磁通量的变化”,为阻碍原磁通量的增加,P、Q只有互相靠拢来缩小回路面积,故A正确,B错。楞次定律可以理解为感应电流的磁场总要阻碍导体间的相对运动,可把PQMN回路等看为一个柱形磁铁,为了阻碍磁铁向下运动,等效磁铁的上面必产生一个同名磁极来阻碍磁铁的下落,故磁铁的加速度必小于g,故C错D正确。

1、如图是某同学设计的用来测量风速的装置。请解释这个装置是怎样工作的。

2、已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成图示电路,当条形磁铁按如图所示情况运动时,以下判断正确的是()
A.甲图中电流表偏转方向向右
B.乙图中磁铁下方的极性是N极
C.丙图中磁铁的运动方向向下
D.丁图中线圈的绕制方向与前面三个相反

3、(赣榆县教研室2008年期末调研)如甲图所示,
光滑的水平桌面上固定着一根绝缘的长直导线,可以自由移动的矩形导线框abcd靠近长直导线放在桌面上。当长直导线中的电流按乙图所示的规律变化时(甲图中电流所示的方向为正方向),则()
A.在t2时刻,线框内没有电流,线框不受力
B.t1到t2时间内,线框内电流的方向为abcda
C.t1到t2时间内,线框向右做匀减速直线运动
D.t1到t2时间内,线框受到磁场力对其做负功

答案:1.略2.ABD3.BD

高考物理第一轮电磁感应中的电路问题自感与涡流复习学案


第三课时电磁感应中的电路问题自感与涡流

【教学要求】
1.了解自感现象和涡流现象及在生活和生产中的应用;
2.掌握解决电磁感应中的电路问题的方法。
【知识再现】
一、电磁感应中的电路问题:
1、在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。
2、解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路的有关规律,如欧姆定律、串联、并联电路电路的性质等。
二、自感现象
1、自感现象——由于导体本身的电流发生变化而产生的电磁感应现象叫做自感现象。
2、自感电动势——在自感现象中产生的感应电动势叫做自感电动势。
3、自感现象的应用:日光灯电路、LC振荡电路等。
4、自感现象的危害与防止:在切断自感系数很大、而电流又很强的电路瞬间形成电弧,必须采用特制的安全开关;精密线绕电阻为了消除使用过程中电流变化引起的自感现象,采用双线绕法。
三、涡流
涡流是电磁感应现象的一种,导体在磁场中运动或处于迅速变化的磁场中时,导体内部就出现像水中旋涡的感应电流,所以叫涡流。

知识点一自感现象
自感现象作为一种特殊的电磁感应现象,是由于流过导体自身的电流的变化而引起的,由楞次定律知,产生的感应电动势(自感电动势)又必将阻碍着电流的这一变化,正是由于这种阻碍,使得自感现象具备一个重要的特征:自感现象中引起自感电动势产生的电流变化,一般只能是逐渐变化而不可能发生突变。
【应用1】在如图中所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可忽略,下列说法中正确的是()
A、合上开关K接通电路时,A2先亮,A1后亮,最后一样亮
B、合上开关K接通电路时,A1和A2始终一样亮
C、断开开关K切断电路时,A1和A2都要经过一会儿才熄灭
D、断开开关K切断电路时,A2立即熄灭,A1过一会儿才熄灭
导示:选择AC。S闭合接通电路时,A2支路中的电流立即达到最大,由于线圈的自感作用,A1支路电流增加的慢,A1后亮A1中的电流稳定后,线圈的阻碍作用消失,A1与A2并联,亮度一样。S断开时,L和A1、A2组成串联的闭合回路,A1和A2亮度一样,由于L中产生自感电动势阻碍L中原电流的消失,使A1和A2过一会才熄灭。
要判断灯泡的发光情况,必须分析在两种情形下流经两灯泡的电流特点,而分析电流特点,首先必须抓住本题的关键所在,线圈L在K接通和断开时所起的作用,即接通K时,线圈L要“阻碍”它所在支路电流的增大,当断开K时,自感电动势充当电源“补偿”支路中电源的减小,再就是要明确开关K通断时整个电路的结构,这样即可分析出正确结果。

【应用2】如图所示的电路中,S闭合时流过电感线圈的电流是2A,流过灯泡的电流是1A,将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是下图中的()
导示:将S突然断开时,在线圈中要产生自感电动势,方向与原来电流方向相同,这时流过灯泡的电流方向与原来电流方向相反,大小2A逐渐减小。故选择D。

知识点二涡流
【应用3】如图为自动售货机投币系统。它可以自动识别硬币,试根据示意图探究其工作原理。
导示:当硬币投入自动售货机的投币口时,硬币被挡住,暂时停止在A处,以便让机器测出电阻。如果电阻值在机器内计算机芯片所认可的范围内,支持物A下降,硬币沿斜面滚下。当硬币通过两块磁铁时,硬币内产生了涡流,从而受到安培力的作用,导致速度减小。当硬币通过磁铁后,传感器测出它的速度,并且与存储在计算机中的标准值比较。如果速度适当,开关B就打开,硬币被接受;否则开关C打开,硬币进入拒绝通道。

类型一电磁感应中的电路问题
解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。解此类问题的基本思路是:
①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源。
②正确分析电路的结构,画出等效电路图。
③结合有关的电路规律建立方程求解。
【例1】(2007年高考天津理综卷24.)两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图所示的电路。
电路中各电阻的阻值均为R,电容器的电容为C。长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求:
(1)ab运动速度v的大小;
(2)电容器所带的电荷量q。
导示:(1)设ab上产生的感应电动势为E,回路中的电流为I,ab运动距离s所用时间为t,则有
E=Blv;I=E/4R;t=s/v
所以,
由上述方程得
(2)设电容器两极板间的电势差为U,则有U=IR
电容器所带电荷量q=CU
解得。
类型二自感现象与电路的综合问题
【例2】(赣榆县教研室08年期末调研)利用气体自激导电发光的霓虹灯,加上80V以上的电压才会点亮,利用图1所示的电路,可以短时间内点亮霓虹灯。已知蓄电池电动势为6V,内阻为5Ω;线圈电阻为35Ω;电路中线圈以外回路的电感忽略不计。先将开关闭合,经过一段时间,回路中电流为一定值;再断开开关,霓虹灯短时间内点亮。霓虹灯的I-U特性图线如图2所示。试求:
(1)闭合开关后,电路中的稳定电流值;
(2)断开开关,线圈中瞬时电流保持不变,流过霓虹灯的电流方向;
(3)断开开关瞬时,线圈产生的感应电动势。
导示:
(1)由E=I(R+r)得A=0.15A
(2)此时电流从B到A流经霓虹灯
(3)断开开关瞬时,线圈中电流保持I=0.15A不变,从霓虹灯I-U图线可知,此时霓虹灯两端的电压为U1=100V;而此时线圈电阻获得的电压U2=Ir=0.15×35=5.25V所以,断开开关时线圈产生的感应电动势为U=U1+U2=105.25V。
1.(泰州市08届高三联考热身训练)电子感应加速器是加速电子装置。它的主要部分如图甲所示。
划斜线区域为电磁铁的两极,在其间隙中安放一个环行真空室。电磁铁中通以频率约几十赫兹的强大交变电流,使两极间的磁感应强度B往返变化,从而在环行室内感应出很强的涡旋电场。用电子枪将电子注入环行室,它们在涡旋电场的作用下被加速,同时在磁场里受到洛伦兹力的作用,沿圆轨道运动如图乙所示。若磁场随时间变化的关系如图丙所示,则可用来加速电子的B—t图象中()
A.第一个1/4周期B.第二个1/4周期
C.第三个1/4周期D.第四个1/4周期
2.如图所示是日光灯的结构示意图,若按图示的电路连接,关于日光灯发光的情况,下列叙述中正确的是()
A.S1接通,S2、S3断开,日光灯就能正常发光
B.S1、S2接通,S3断开,日光灯就能正常发光
C.S3断开,接通S1、S2后,再断开S2,日光灯就能正常发光
D.当日光灯正常发光后,再接通S3,日光灯仍能正常发光

3、如图所示,abcd是由粗细均匀的电阻丝制成的矩形线框水平放置,导体MN有电阻,其电阻大小与ab边电阻大小相同,可在ab边及dc边上无摩擦滑动,且接触良好。匀强磁场(图中未画出)垂直于线框平面,当MN在水平拉力作用下由紧靠ad边向bc边匀速滑动的过程中,以下说法中正确的是()
A.MN中电流先减小后增大
B.MN两端电压先减小后增大
C.作用在MN上的拉力先减小后增大
D.矩形线框中消耗的电功率先减小后增大

4、(盐城市2007/2008学年度高三年级第一次调研考试)两金属棒和三根电阻丝如图连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R1:R2:R3=1:2:3,金属棒电阻不计。当S1、S2闭合,S3断开时,闭合的回路中感应电流为I,当S2、S3闭合,S1断开时,闭合的回路中感应电流为5I,当S1、S3闭合,S2断开时,闭合的回路中感应电流是()
A.0B.3IC.6ID.7I

4、(江苏省2008年高考物理全真模拟卷)光滑水平导轨宽L=lm,电阻不计,左端接有“6V6W”的小灯.导轨上垂直放有一质量m2=0.5kg、电阻r=2欧的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示.整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T.释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)。求:
(1)钩码落地前的瞬间,导体棒的加速度;
(2)在钩码落地前的过程中小灯泡消耗的电能;
(3)在钩码落地前的过程中通过电路的电量.

答案:1、A2、C3、ACD4、D
5、(1)a=5.33m/s;(2)E灯=6J;(3)q=0.5C

电磁感应中的电路与图象问题


一名优秀负责的教师就要对每一位学生尽职尽责,作为高中教师准备好教案是必不可少的一步。教案可以让学生更好的消化课堂内容,使高中教师有一个简单易懂的教学思路。优秀有创意的高中教案要怎样写呢?下面是小编精心为您整理的“电磁感应中的电路与图象问题”,希望能为您提供更多的参考。

电磁感应中的电路与图象问题?

要点一电磁感应中的电路问题
即学即用
1.如图所示,顶角θ=45°的光滑金属导轨MON固定在水平面内,导轨处在磁感应强度大小为B、
方向竖直的匀强磁场中.一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON
向右运动,导体棒的质量为m,导轨与导体棒单位长度的电阻均为r.导体棒与导轨接触点为a和b,导体棒在滑动过
程中始终保持与导轨良好接触.t=0时,导体棒位于顶点O处,求:
(1)t时刻流过导体棒的电流强度I和电流方向.
(2)导体棒作匀速直线运动时水平外力F的表达式.
(3)导体棒在0~t时间内产生的焦耳热Q.
答案
要点二电磁感应中的图象问题
即学即用
2.如图所示,图中两条平行虚线之间存在匀强磁场,虚线间的距离为l,磁场方向垂直纸面向里.
abcd是位于纸面内的梯形线圈,ad与bc间的距离也为l.t=0时刻,bc边与磁场区域边界重合
(如图).现令线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域.取沿a→b→c→d→a的感应电流为
正,则在线圈穿越磁场区域的过程中,感应电流I随时间t变化的图线可能是()
答案B

题型1电磁感应与电路综合题
【例1】如图所示,在两条平行光滑导轨上有一金属棒ab,匀强磁场跟轨道平面垂直,导轨上有两定值电阻,R1=5Ω,
R2=6Ω,电路中的电压表量程为0~10V,电流表的量程为0~3A.将R0调至30Ω,用F=40N的力使ab垂直导轨
向右平移,当ab达到稳定状态时,两电表中有一表正好达到满偏,而另一表未达到满偏.

(1)求此时ab的速度.
(2)调节R0的阻值使ab稳定时两表都正好满偏,力F必须为多大?此时ab的速度又为多大?
答案(1)1m/s(2)60N1.25m/s
题型2电磁感应中的图象问题
【例2】如图所示,图中A是一边长为l的方形线框,电阻为R.今维持线框以恒定的速度v沿x轴运动,并穿过图中所示的匀强磁场B区域.若以x轴正方向作为力的正方向,线框在图示位置的时刻作为时间的零点,则磁场对线框的作用力F随时间t的变化图线为下图中的

答案B
题型3等效模型
【例3】如图所示甲(a)是某人设计的一种振动发电装置,它的结构是一个半径为r=0.1m、有20匝的线圈套在辐
向形永久磁铁槽中,磁场的磁感线均沿半径方向均匀分布(其右视图如图甲(b)所示).在线圈所在位置磁感应强
度B的大小均为0.2T.线圈的电阻为R1=2Ω,它的引出线接有R2=8Ω的灯泡L,外力推动线圈的P端做往复运动,
便有电流通过灯泡.当线圈向右的位移随时间变化的规律如图乙所示时(x取向右为正):

(1)试画出感应电流随时间变化的图象(在图甲(b)中取逆时针方向的电流为正).
(2)求每一次推动线圈运动过程中的作用力.
(3)求该发电机的输出功率(摩擦等损耗不计).
答案(1)从题图乙可以看出,线圈每次往返运动的速度
v=
由于线圈做切割磁感线运动产生的感应电流在每次运动过程中都保持恒定不
变.故线圈产生的感应电动势为E=nBLv(式中L是线圈每一周的长度,即2πr),代入数据得
E=n2πrBv=20×2×3.14×0.1×0.2×0.8V≈2V
感应电流I=A=0.2A
由图可以看出线圈沿x轴正方向运动时,产生的感应电流是沿顺时针方向的(从右向左看).于是可得到电流I随
时间t变化的图象.

(2)0.5N(3)0.32W

1.如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一,磁场垂直
穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为
E,则a、b两点间的电势差为()
A.B.C.?D.E
答案C
2.(2009•开封模拟)如图所示,一边长为a,电阻为R的等边三角形线框在外力作用下以
速度v0匀速穿过宽度均为a的两个匀强磁场区域,两磁场磁感应强度的大小均为B,方向
相反,线框运动方向与底边平行且与磁场边缘垂直.以逆时针方向为电流正方向,从图示位
置开始线框中感应电流I与沿运动方向的位移s的关系图象为()

答案B
3.如图所示,粗细均匀的金属环的电阻为R,可绕轴O转动的金属杆OA的电阻为R/4,杆
长为l,A端与环相接触,一阻值为R/2的定值电阻分别与杆的端点O及环边缘连接.杆
OA在垂直于环面向里、磁感应强度为B的匀强磁场中,以角速度ω顺时针转动.求电路
中总电流的变化范围.
答案≤I≤
4.如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝,
R1=4Ω,R2=8Ω(导轨其他部分电阻不计),导轨OAC的形状满足方程y=2sinx
(单位:m),磁感应强度B=0.2T的匀强磁场方向垂直于导轨平面,足够长的金属棒在水平外力F作用下,以恒定
的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的
电阻.求:
(1)外力F的最大值.
(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率.
(3)在滑动过程中通过金属棒的电流I与时间t的关系.
答案(1)0.3N(2)1W(3)I=

高考物理第一轮导学案复习:电磁感应


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,让教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的教案呢?下面是小编为大家整理的“高考物理第一轮导学案复习:电磁感应”,欢迎阅读,希望您能阅读并收藏。

20xx届高三物理一轮复习导学案
十、电磁感应(1)

【课题】电磁感应现象及楞次定律
【目标】
1、通过探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
2、体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径,并用来分析一些实际问题。
【导入】
一、电磁感应现象—感应电流产生的条件
1、内容:只要通过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.
2、条件:①_____________;②______________________________.
3、磁通量发生变化△ф=ф2-ф1,一般存在以下几种情形:
①投影面积不变,磁感应强度变化,即△ф=△BS;
②磁感应强度不变,投影面积发生变化,即△ф=B△S。其中投影面积的变化又有两种形式:
A.处在磁场的闭合回路面积发生变化,引起磁通量变化;
B.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.
③磁感应强度和投影面积均发生变化,这种情况少见。此时,△ф=B2S2-B1S1;注意不能简单认为△ф=△B△S。
二、感应电流方向——楞次定律
1、感应电流方向的判定:方法一:右手定则;方法二:楞次定律。
2、楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
3、楞次定律的理解:掌握楞次定律,具体从下面四个层次去理解:
①谁阻碍谁——感应电流的磁通量阻碍原磁场的磁通量.
②阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.
③如何阻碍——原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.
④阻碍的结果——阻碍并不是阻止,结果是增加的还增加,减少的还减少.
4、判定感应电流方向的步骤:
①首先明确闭合回路中引起感应电流的原磁场方向.
②确定原磁场穿过闭合回路中的磁通量是如何变化的.(是增大还是减小)
③根据楞次定律确定感应电流的磁场方向——“增反减同”.
④利用安培定则确定感应电流的方向.
5、楞次定律的“阻碍”含义可以推广为下列三种表达方式:
①阻碍原磁通量(原电流)变化.(线圈的扩大或缩小的趋势)—“增反减同”
②阻碍(磁体的)相对运动,(由磁体的相对运动而引起感应电流).—“来推去拉”
③从能量守恒角度分析:能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现。
注意:有时应用推广含义解题比用楞次定律本身方便得多。
6、安培定则、左手定则、右手定则、楞次定律的综合应用
(1)应用现象
(2)应用区别:关键是抓住因果关系
①.因电而生磁(I→B)→安培定则
②.因动而生电(v、B→I安)→右手定则
③.因电而受力(I、B→F安)→左手定则

【导研】
[例1](芜湖一中2009届高三第一次模拟考试)如图,线圈L1,铁芯M,线圈L2都可自由移动,S合上后使L2中有感应电流且流过电阻R的电流方向为a→b,可采用的办法是()
A.使L2迅速靠近L1B.断开电源开关S
C.将铁芯M插入D.将铁芯M抽出

[例2](通州市2009届高三查漏补缺专项检测)4.如图所示,Q是单匝金属线圈,MN是一个螺线管,它的绕线方法没有画出,Q的输出端ab和MN的输入端c、d之间用导线相连,P是在MN的正下方水平放置的用细导线绕制的软弹簧线圈.若在Q所处的空间加上与环面垂直的变化磁场,发现在t1至t2时间段内弹簧线圈处在收缩状态,则所加磁场的磁感应强度的变化情况可能是()
[例3]两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环,当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流,则()
A.A可能带正电且转速减小B.A可能带正电且转速增大
C.A可能带负电且转速减小D.A可能带负电且转速增大

[例4]如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经表示.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()
A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势
C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒向右加速运动时,b点电势高于a点,d点电势高于c点

[例5]如图所示,光滑固定导体M、N水平放置,两根导体捧P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()
A、P、Q将互相靠拢B、P、Q将互相远离
C、磁铁的加速度仍为gD、磁铁的加速度小于g

[例6](选修3-2第10页T7)如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速运动。t=0时,磁感应强度为B0,此时MN到达的位置恰好使MDEN构成一个边长为l的正方形。为使MN棒中不产生感应电流,从t=0开始,磁感应强度B应怎样随时间t变化?请推导这种情况下B与t的关系式。

【导练】
1、如图所示,一条形磁铁从静止开始穿过采用双线绕成的闭合线圈,条形磁铁在此过程中做()
A.减速运动B.匀速运动
C.自由落体运动D.非匀变速运动
2、(南通市2008届高三第三次调研测试)如图所示,一个金属薄圆盘水平放置在竖直向上的匀强磁场中,下列做法中能使圆盘中产生感应电流的是()
A.圆盘绕过圆心的竖直轴匀速转动
B.圆盘以某一水平直径为轴匀速转动
C.圆盘在磁场中向右匀速平移D.匀强磁场均匀增加

3、(江苏省盐城市2009届高三上学期第一次调研考试)6.如图所示,在直导线下方有一矩形线框,当直导线中通有方向如图示且均匀增大的电流时,线框将()
A.有顺时针方向的电流B.有逆时针方向的电流
C.靠近直导线D.远离直导线

4、(宿迁市09学年高三年级第一次调研测试)3.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示.线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则()
A.铝环不断升高
B.铝环停留在某一高度
C.铝环跳起到某一高度后将回落
D.如果电源的正、负极对调,观察到的现象不变

5、(普陀区09高三年级物理学科期末调研试卷)如图所示,有一通电直导线MN,其右侧有一边长为L的正方形线圈abcd,导线与线圈在同一平面内,且导线与ab边平行,距离为L。导线中通以如图方向的恒定电流,当线圈绕ab边沿逆时针方向(从上往下看)转过角度θ(θ90°)的过程中,线圈中产生感应电流的方向为________方向(选填“abcda”或“adcba”);当线圈绕ab边转过角度θ=________时,穿过线圈中的磁通量最小。

6、动圈式话筒和磁带录音机都应用了电磁感应现象.如图(a)是话筒原理图,(b)是录音机的录、放原理图,由图可知()
A、话筒工作时磁铁不动线圈移动而产生感应电流.
B、录音机放音时变化的磁场在静止的线圈里产生感应电流.
C、录音机放音时线圈中变化的电流在磁头缝隙处产生变化的磁场.
D、录音机录音时线圈中变化的电流在磁头缝隙处产生变化的磁场.

文章来源:http://m.jab88.com/j/75532.html

更多

最新更新

更多