教案课件是老师上课中很重要的一个课件,大家应该在准备教案课件了。对教案课件的工作进行一个详细的计划,新的工作才会更顺利!有多少经典范文是适合教案课件呢?急您所急,小编为朋友们了收集和编辑了“二次函数的图像与性质(1)导学案”,供您参考,希望能够帮助到大家。
2.4二次函数y=ax2+bx+c的图象与性质(1)
教学目标:1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,.理理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标、最值.
知识回顾:
1.抛物线y=3x2的顶点坐标是,对称轴是,开口向,最值是;
2.抛物线y=3x2+2可看成把抛物线y=3x2沿y轴向平移个单位得到,它的顶点坐标是,对称轴是,开口向.最值是
新知探究:
3、(1)作函数y=3(x-1)2的图象。
x
y=3(x-1)2
结论:函数y=3x2的图像沿x轴向平移个单位长度,得到y=3(x-1)2的图像。
(2)教师用几何画板演示二次函数y=3(x+1)2的图象。
结论:函数y=3x2的图像沿x轴向平移个单位长度,得到y=3(x+1)2的图像。
(3)教师用几何画板演示二次函数y=3(x-1)2+2的图像。
回答:函数y=3x2的图像沿x轴向平移个单位长度,得到y=3(x-1)2的图像,再向______平移_____个单位长度得到函数y=3(x-1)2+2的图象.
4、对于形式你能否直接说出它的开口方向,对称轴和顶点坐标呢?
当a0时,开口向_____,当a<0时,开口向______,对称轴为直线________,顶点坐标是(_____,______).
小结:一般地,二次函数的图象可由的图象平移得到.
其中,的图象可以看成的图象先沿x轴整体左(右)平移个单位(当h0时,向右平移;当h0时,向左平移),再沿对称轴整体上(下)平移个单位(当k0时向上平移;当k0时,向下平移)得到的.
因此,二次函数的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与的值有关.
抛物线y=a(x-h)2+k(a0)y=a(x-h)2+k(a<0)
顶点坐标
对称轴
开口方向
增减性
最值
巩固训练
5.指出下列函数图象的开口方向、对称轴和顶点坐标、最值
开口方向:对称轴:开口方向:对称轴:
顶点坐标:最值:顶点坐标:最值:
开口方向:对称轴:开口方向:对称轴:
顶点坐标:最值:顶点坐标:最值:
(5)(6)
开口方向:对称轴:开口方向:对称轴:
顶点坐标:最值:顶点坐标:最值:
6.一条抛物线的形状与的形状和开口方向相同,且顶点坐标为(4,-2),试写出它的关系式.
课后反馈
1.二次函数y=5(x-1)2+3的图象的顶点坐标是()
A、(-1,3)B、(1,3)C、(-1,-3)D、(1,-3)
2、抛物线y=2(x-3)的开口方向是,对称轴是,顶点坐标是,它可以看作是由抛物线y=向平移个单位得到的.
3、抛物线y=-3x2向平移个单位得到二次函数y=-3(x-4)2的图像;再向_____平移_____个单位得到函数y=-3(x-4)2-6的图像,这个函数的开口,对称轴是,当x=时,y有最值,是.
4、将抛物线的图象先沿x轴向左平移4个单位,再沿对称轴向下平移3个单位,得到的抛物线的表达式是.
5、将抛物线y=2x2-3先向上平移3单位,就得到函数的图象,在向平移个单位得到函数y=2(x-3)2的图象.
6、将二次函数y=-3(x-2)2的图像向左平移3个单位后得到函数的图像,其顶点坐标是,对称轴是,当x=时,y有最值,是.
7、二次函数的图象不经过第三、四象限,写出三个符合条件的函数关系式。
8、将抛物线y=ax向左平移后所得新抛物线的顶点横坐标为-2,且新抛物线经过点(1,3),求a的值.
9、已知二次函数
(1)求此二次函数的图像与x轴的交点坐标;
(2)将y=x的图像经过怎样的平移,就可以得到二次函数的图像。
10、二次函数y=a(x-h)的图象如图,已知a=,OA=OC,试求该抛物线的解析式。
教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“二次函数与一元二次方程导学案”,希望能为您提供更多的参考。
九年级(下)数学学科导学案
主备人:复备人:备课组审核人:班级:小组:学号:姓名:编号:12
课题:2.8二次函数与一元二次方程的关系
学习目标:1.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及满足什么条件时方程有两个不等的实根,有两个相等的实根和没有实根2.理解一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c与直线y=h(h是实数)图象交点的横坐标
一、课前热身(填空):
1.抛物线y=x2+2x-4的对称轴是_______,开口方向是______,顶点坐标是__________
二、合作探究
2.二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如下图所示。
1)每个图象与x轴有几个交点?
2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?
(3)说说二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
四.知识运用
4.阅读教材P73~75左图是y=x2+2x-10的图像
你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?
5.左图是y=x2+2x-10的图像,利用二次函数的图象求一元二次方程x2+2x-10=2的近似根
6.(2007天津市)知一抛物线与x轴的交点是、B(1,0),且经过点C(2,8)。
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标。
三、归纳总结
结论:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:_____________________________________________.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的_______就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
3.一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式
h=-4.9t2+19.6t来表示.其中t(s)表示足球被踢出后经过的时间.
(1)作出函数h=-4.9t2+19.6t的图像
(2)当t=1时,足球的高度是多少?
(3)t为何值时,h最大?
(4)经过多长时间球落地?
(5)方程-4.9t2+19.6t=0的根的实际意义是什么?能在图上表示吗?
(6)方程14.7=-4.9t2+19.6t的根的实际意义是什么?你能在图上表示吗?
7.如图,已知二次函数的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《《二次函数基础训练》导学案》,欢迎大家阅读,希望对大家有所帮助。
《二次函数基础训练》导学案文章来源:http://m.jab88.com/j/75529.html
更多