老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有制定教案课件工作计划,才能对工作更加有帮助!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“用一元二次方程解决问题导学案”,大家不妨来参考。希望您能喜欢!
4.3用一元二次方程解决问题(1)
班级姓名学号
学习目标
1.进一步理解方程是刻画客观世界的有效模型,
2.通过对实际问题的决实际问题的过程,知道解应用题的一般步骤和关键所在
学习重点:认识不等式
学习难点:文字语言转化为数学不等式
教学过程
一、情境引入:
围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2.求这个公园的长与宽.
二、探究学习:
1.尝试:
通常用一元一次方程解决实际问题要经历怎样的过程?
2.概括总结.
用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。
3.典型例题:
例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。
甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?
例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米
池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。
例3、两个连续奇数的积是323,求这两个数。
4.巩固练习:
(1)在三位数345中,3,4,5是这个三位数的什么?
(2)如果a,b,c分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?
(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原来的数就得到1855,求原来的两位数。
(4)已知两个数的和等于12,积等于32,则这两个是
(5)求x:(x-1)=(x+2):3中的x.
(6)三个连续整数两两相乘后,再求和,得362,求这三个数。
三、归纳总结:
1、列一元二次方程解决实际问题的一般步骤.
2、解的取舍情况.
4.3用一元二次方程解决问题(1)
【课后作业】
班级姓名学号
1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,则这个百分数为()
A、10%B、20%C、120%D、180%
2、若两个连续整数的积是56,则它们的和是()
A、±15B、15C、-15D、11
3、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是。
4、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。
5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?
6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,AB的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。
一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“用一元二次方程解决实际问题”,相信能对大家有所帮助。
28.3用一元二次方程解决实际问题
教学目的知识技能使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.
数学思考提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.
解决问题通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.
情感态度通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.
教学难点审题,从文字语言中挖掘有价值的信息.
知识重点会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.
教学过程设计意图
教
学
过
程
问题一:列方程解应用题的一般步骤?
师生共同回忆
列方程解应用题的步骤:
(1)审题;(2)设未知数;
(3)列方程;(4)求解;
(5)检验;(6)答.
问题二:矩形的周长和面积?长方体的体积?
问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.
教师活动:引导学生读题,找到题目中的关键语句.
学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.
教师活动:用多媒体演示分析,解题方法.
做一做
如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.
课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的,求这个正方形的边长.
问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?
学生活动:在众多的文字中,找到关键语句,分析相等关系.
教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.
课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?
2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25%的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)
复习列方程解应用题的一般步骤.
本题为后面解决有关面积、体积方面问题做铺垫.
提高学生的审题能力.使学生会解决有关面积的问题.
解决体积问题的问题
培养学生用数学的意识以及渗透转化和方程的思想方法.
强调对方程的解进行双重检验.
小结与作业
课堂
小结利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.
本课
作业课本第43页习题2
课后随笔(课堂设计理念,实际教学效果及改进设想)
每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《一元二次方程》,仅供参考,大家一起来看看吧。
第二十二章一元二次方程
教材内容
本单元教学的主要内容:
1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),
一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.
2.本单元在教材中的地位和作用:
教学目标
1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点
重点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)
3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根与系数的关系以及灵活运用
课时安排
本章教学时约需课时,具体分配如下(供参考)
22.1一元二次方程1课时
22.2降次7课时
22.3实际问题与一元二次方程3课时
教学活动、习题课、小结
22.1一元二次方程
教学目的
1.使学生理解并能够掌握整式方程的定义.
2.使学生理解并能够掌握一元二次方程的定义.
3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.
教学重点、难点
重点:一元二次方程的定义.
难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.
教学过程
复习提问
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已学过的方程?分别叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.
引入新课
1.方程的分类:(通过上面的复习,引导学生答出)
学过的几类方程是
没学过的方程有x2-70x+825=0,x(x+5)=150.
这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”
据此得出复习中学生未学过的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式
注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化为:x2+5x-150=0.
从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为
ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.
其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.
【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.
例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.
课堂练习P271、2题
归纳总结
1.方程分为两大类:
判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.
2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零.
布置作业:习题22.11、2题.
达标测试
1.在下列方程中,一元二次方程的个数是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1个B.2个C.3个D.4个
2.关于x的一元二次方程3x2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是关于x的一元二次方程,则()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是
5.方程4x2=3x-+1的二次项是,一次项是,常数项是
课后反思:
22.2解一元二次方程
第一课时
直接开平方法
教学目的
1.使学生掌握用直接开平方法解一元二次方程.
2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教学重点、难点
重点:准确地求出方程的根.
难点:正确地表示方程的两个根.
教学过程
复习过程
回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.
即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.
引入新课
我们已经学过了一些方程知识,那么上述方程属于什么方程呢?
新课
例1解方程x2-4=0.
解:先移项,得x2=4.
即x1=2,x2=-2.
这种解一元二次方程的方法叫做直接开平方法.
例2解方程(x+3)2=2.
练习:P281、2
归纳总结
1.本节主要学习了简单的一元二次方程的解法——直接开平方法.
2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作业:习题22.14、6题
达标测试
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解为
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程无实根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.对于方程(ax+b)2=c下列叙述正确的是
A.不论c为何值,方程均有实数根B.方程的根是
C.当c≥0时,方程可化为:
D.当c=0时,
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
课后反思
文章来源:http://m.jab88.com/j/68868.html
更多