20xx高三物理复习知识点:简谐运动
一、简谐运动
基础目标
1、回复力、平衡位置、机械振动
2、知道什么是简谐运动及物体做简谐运动的条件。
3、理解简谐运动在一次全振动过程中位移、回复力、加速度、速度的变化情况。
4、理解简谐运动的对称性及运动过程中能量的变化。
拔高目标
1、简谐运动的证明(竖直方向弹簧振子,水面上木块)。
2、简谐运动与力学的综合题型。
3、简谐运动周期公式。
【重难点】
重点:简谐运动的特征及相关物理量的变化规律。
难点:偏离平衡位置位移的概念及一次全振动中各量的变化。
一.新课引入
知识目标:引入新的运动--机械振动
前面已学过的运动:
按运动轨迹分:直线运动按速度特点分:匀变速
曲线运动非匀变速
自然界中还有一种更常见的运动:机械振动
二.机械振动
在自然界中,经常观察到一些物体来回往复的运动,如吊灯的来回摆动,树枝在微风中的摆动,下面我们就来研究一下这些运动具有什么特点。
这些运动都有一个明显的中心位置,物体或物体的一部分都在这个中心位置两侧往复运动。这样的运动称为机械振动。
当物体不再往复运动时,都停在这个位置,我们把这一位置称为平衡位置。(标出平衡位置)
平衡位置是指运动过程中一个明显的分界点,一般是振动停止时静止的位置,并不是所有往复运动的中点都是平衡位置。存在平衡位置是机械运动的必要条件,有很多运动,尽管也是往复运动,但并不存在明显的平衡位置,所以并非机械振动。
如:拍皮球、人来回走动
注意:在运动过程中,平衡位置受力并非一定平衡!如:小球的摆动
总结:机械振动的充要条件:1、有平衡位置2、在平衡位置两侧往复运动。
自然界中还有哪些机械振动?
钟摆、心脏、活塞、昆虫翅膀的振动、浮标上下浮动、钢尺的振动
三.回复力
1)回复力
机械振动的物体,为何总是在平衡位置两侧往复运动?
结论:受到一个总是指向平衡位置的力
观察:振子在平衡位置右侧时,有一个向左的力,在平衡位置左侧时,有一个向右的力,这个力总是促使物体回到平衡位置。
总结:总是指向平衡位置,它的作用是总使振子回复到平衡位置,这样的力我们称之为回复力。
(在平衡位置时,回复力应该为零)
回复力:使物体返回平衡位置的力,方向总是指向平衡位置。
特点:1.是效果力。(按效果命名的力)
2.可以是某个力,也可以是几个力的合力,还可以是某个力的分力。
2)偏离平衡位置的位移
由于振子总是在平衡位置两侧移动,如果我们以平衡位置作为参考点来研究振子的位移就更为方便。这样表示出的位移称为偏离平衡位置的位移。它的大小等于物体与平衡位置之间的距离,方向由平衡位置指向物体所在位置。(由初位置指向末位置)用x表示。
偏离平衡位置的位移与某段时间内位移的区别:偏离平衡位置的位移是以平衡位置为起点,以平衡位置为参考位置。
某段时间内的位移,是默认以这段时间内的初位置为起点。
四.简谐运动
弹簧振子。一个滑块通过一个弹簧连在底座上,底座上有许多小孔,和一个皮管相连,对着皮管吹气,底座上喷出的气流会使振子浮在底座上方,从而达到减小摩擦的作用,和前面的气垫导轨相似。
演示:弹簧振子的运动,结论:是机械振动。
树枝的振动,没有什么规律可循,而弹簧的振动具有规律性。接下来研究弹簧振子振动的规律。
对弹簧振子振动规律的研究:
1、弹簧振子运动过程中F与x之间的关系。
大小关系:根据胡克定律,F=k|x|
方向关系:F与x方向相反,取定一正方向后可得,F=-kx
总结:F=-kx
2、弹簧振子运动过程中各物理量的变化情况分析
结合右图分析振子在一次全振动中回复力F、偏离平衡位置的位移x、加速度a、速度V的大小变化情况及方向。
1)A→Ox↓,方向由O向A
F↓,方向由A向O
a↓,方向由A向O
V↑,方向由O向A
振子做加速度不断减小的加速运动A′OA
2)在O位置,x=0,F=0,a=0,V最大;
3)O→A′x↑,方向由O向A′
F↑,方向由A′向O
a↑,方向由A′向O
V↓,方向由O向A′
振子做加速度不断增大的减速运动
4)在A′位置,x最大,F最大,a最大,V=0
5)A′→Ox↓,方向由O向A′
F↓,方向由A′向O
a↓,方向由A′向O
V↑,方向由O向A′
振子做加速度不断减小的加速运动
6)在O位置,x=0,F=0,a=0,V最大;
7)O→Ax↑,方向由O向A
F↑,方向由A向O
a↑,方向由A向O
V↓,方向由O向A
振子做加速度不断增大的减速运动
8)在A位置,x最大,F最大,a最大,V=0
3、简谐运动定义
弹簧振子由于偏离平衡位置的位移和回复力具有明显的对称性,导致其速度、加速度等都具有明显的对称性,形成的运动是一种简单而和谐的运动。我们称之为简谐运动。
定义:物体在跟偏离平衡位置的位移大小成正比,方向总是指向平衡位置的平衡位置的回复力作用下的振动叫简谐运动。
条件:1.有回复力。2.F=-kx
证明竖直方向的弹簧振子的运动是简谐运动。
证明步骤:1、找平衡位置
2、找回复力
3、找F=kx
4、找方向关系
五、课堂小结
概念:机械振动、回复力、平衡位置、偏离平衡位置的位移、简谐运动、简谐运动的特点
方法:如何证明某个运动是简谐运动
六、思考题
1、试证明水面上木块的振动是简谐运动
2、试证明:A木块降到最低点时加速度大于重力加速度g
(一)3、如图,m和M两木块通过弹簧连接,现将m用力下压,欲使m弹起时,刚好M对地面压力为0,m应下压的距离是多少?(弹簧的劲度系数为k)
相关推荐
20xx高三物理复习知识点:简谐运动的能量阻尼振动
20xx高三物理复习知识点:简谐运动的能量阻尼振动
五、简谐运动的能量阻尼振动
1.知道振幅越大,振动的能量(总机械能)越大;
2.对单摆,应能根据机械能守恒定律进行定量计算;
3.对水平的弹簧振子,应能定量地说明弹性势能与动能的转化;
4.知道什么是阻尼振动和阻尼振动中能量转化的情况.
5.知道在什么情况下可以把实际发生的振动看作简谐运动.
【教学重点】
1.对简谐运动中能量转化和守恒的具体分析!
2.什么是阻尼振动.
【教学难点】
关于简谐运动中能量的转化!
【教学过程】
一、导入新课
1.演示:取一个单摆,将其摆球拉到一定高度后释放,观察它的单摆摆动,最后学生概括现象;
2.现象:单摆的振幅会越来越小,最后停下来.
3.教师讲解引入:实际振动的单摆为什么会停下来,今天我们就来学习这个问题.
板书:简谐运动的能量阻尼振动。
二、新课教学
1.简谐运动的能量
(1)用多媒体模拟:
水平弹簧振子在外力作用下把它拉伸,松手后所做的简谐运动.
单摆的摆球被拉伸到某一位置后所做的简谐运动;如下图甲、乙所示
(2)试分析弹簧振子和单摆在振动中的能量转化情况,并填入表格.
表一:
振子的运动A→OO→A′A′→OO→A
能量的变化动能增大减少增大减少
势能减少增大减少增大
总能不变不变不变不变
表二:
单摆的运动A→OO→A′A′→OO→A
能量的变化动能增大减少增大减少
势能减少增大减少增大
总能不变不变不变不变
(3)学生讨论分析后,抽代表回答,并把结果填入表中.
(4)用实物投影仪出示思考题:
①弹簧振子或单摆在振幅位置时具有什么能?该能量是如何获得的?
②振子或单摆在平衡位置时具有什么能?该能量又是如何获得的?
③为什么在表格的总能量一栏填不变?
(5)学生讨论后得到:
①弹簧振子或单摆在振幅位置时具有弹性势能或重力势能,这些能量是由于外力对振子或摆球做功并使外界的能量转化为弹性势能或重力势能储存起来.
②在平衡位置时振子或摆球都具有动能,这个能量是由重力势能或弹性势能转化而来的.
③因为在振子和摆球的振动过程中,只有弹力或只有重力做功,系统的机械能守恒.
(6)教师总结
在外力的作用下,使振子或摆球振动起来,外力对它们做的功越多,振子或摆球获得的势能也越大,同时振幅也越大;
振子或单摆振动起来之后,由于是简谐运动,所以能量守恒,此后它的振幅将保持不变.
板书:简谐运动是理想化的振动,振动过程中系统的能量守恒;
系统的能量与振幅有关,振幅越大,能量越大.
(7)用多媒体重新展示振子和弹簧的简谐运动:并让学生画出其运动的图象:
上述图象中①是错误的,因为我们展示的振动都是从振幅处起振的,所以①不对;
②③都是正确的,之所以不同是由于所选定的正方向不同而产生的.
三、阻尼振动
(1)过渡引言:上边我们研究了简谐运动中能量的转化,对简谐运动而言,一旦供给振动系统以一定的能量,使它开始振动,由于机械能守恒,它就以一定的振幅永不停息地振动下去,所以简谐运动是一种理想化的振动.下边我们来观察两个实际振动.
(2)演示:
①实际的单摆发生的振动.
②敲击音叉后音叉的振动.
(3)学生描述观察到的现象:
单摆和音叉的振幅越来越小,最后停下来.
(4)讨论并解释现象
在单摆和音叉的振动过程中,不可避免地要克服摩擦及其他阻力做功,系统的机械能就要损耗,振动的振幅就会逐渐减小,机械能耗尽之时,振动就会停下来了.
(5)要求学生画出上述单摆和音叉的运动图象:
(6)教师总结并板书:
①由于振动系统受到摩擦和其他阻力,即受到阻尼作用,系统的机械能随着时间而减少,同时振幅也逐渐减小,这样的振动叫阻尼振动.
②阻尼过大时,系统将不能发生振动;
阻尼越小,振幅减小得越慢.
(7)讲解:
①所谓阻尼是指消耗系统能量的因素,它主要分两类:一类是摩擦阻尼,例如单摆运动时的空气阻力等;另一类是辐射阻尼,例如音叉发声时,一部分机械能随声波辐射到周围空间,导致音叉振幅减小.
②如果外界不断给振动系统补充由于阻尼存在而导致的能量损耗,从而使振动的振幅不变,我们把这类振动叫无阻尼振动.
③无阻尼振动也是等幅振动.
(8)学生阅读课文,回答在什么情况下,阻尼振动可以作为简谐振动来处理?
学生答:当阻尼很小时,在一段不太长的时间内,看不出振幅有明显的减小,就可以把它作为简谐运动来处理.
四、小结
1.振动物体都具有能量,能量的大小与振幅有关.振幅越大,振动的能量也越大.
2.对简谐运动而言,振动系统一旦获得一定的机械能,振动起来,这一个能量就始终保持不变,只发生动能与势能的相互转化.
3.振动系统由于受到外界阻尼作用,振动系统的能量逐渐减小,振幅逐渐减小,这种振动叫阻尼振动,实际的振动系统都是阻尼振动,简谐振动只是一种理想的模型.
20xx高三物理复习知识点
20xx高三物理复习知识点
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]6.位移s=V平t=Vot+at=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vog(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt
5.运动时间t=(2y/g)(通常又表示为(2h/g))
6.合速度Vt=(Vx2+Vy2)=[Vo2+(gt)2]
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2),
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r);ω=(GM/r3);T=2π(r3/GM){M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)=(GM/r地)=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)(余弦定理)F1⊥F2时:F=(F12+F22)
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FNG,失重:FNr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0ΔEKΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo-(M+m)vt=fs相对
20xx高三物理复习知识点:单摆
20xx高三物理复习知识点:单摆
四、单摆
1.理解单摆振动的特点及它做简谐运动的条件;
2.观察演示实验,概括出周期的影响因素,培养学生由实验现象得出物理结论的能力。
3.掌握并学会应用单摆振动的周期公式。
【重点、难点分析】
1.本课重点在于掌握好单摆的周期公式及其成立条件。
2.本课难点在于单摆回复力的分析。
解决方案:对于重点内容通过课堂巩固练习加深印象。本课难点在于力的分析上,由教师画好受力分析图,用彩粉笔标示,同时引导学生看书,这部分内容属于A类要求及了解内容,只要使大部分学生能明白基本过程即可,重在强调最后结论。
【教学过程】
一、单摆振动的特点(回复力和平衡位置)
1、单摆及其平衡位置
一根绳子上端固定,下端系着一个球。物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一个一定质量的质点,在竖直平面内小角度地摆动。如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆.
问题:为什么对单摆有上述限制要求呢?
①线的伸缩和质量可以忽略--使摆线有一定的长度而无质量,质量全部集中在摆球上.
②线长比球的直径大得多,可把摆球当作一个质点,只有质量无大小,悬线的长度就是摆长.
单摆是实际摆的理想化的物理模型.
另外,单摆绳要轻而长,球要小而重都是为了减少阻力。
2、单摆的回复力
答:单摆的回复力由绳的拉力和重力的合力来提供。分析过程:1、不可能是重力或绳子的拉力。2、不可能是重力和拉力的合力。
①在研究摆球沿圆弧的运动情况时,要以不考虑与摆球运动方向垂直的力,而只考虑沿摆球运动方向的力,如图乙所示.
②因为F′垂直于v,所以,我们可将重力G分解到速度v的方向及垂直于v的方向.且G1=Gsinθ=mgsinθG2=Gcosθ=mgcosθ
③说明:正是沿运动方向的合力G1=mgsinθ提供了摆球摆动的回复力.
二、单摆振动是简谐运动
推导:在摆角很小时,sinθ=
又回复力F=mgsinθF=mg·(x表示摆球偏离平衡位置的位移,l表示单摆的摆长)
在摆角θ很小时,回复力的方向与摆球偏离平衡位置的位移方向相反,大小成正比,单摆做简谐运动.
知道简谐运动的图象是正弦(或余弦曲线),那么在摆角很小的情况下,既然单摆做的是简谐运动,它振动的图象也是正弦或余弦曲线.
三、单摆的周期
1、周期与振幅无关
[演示1]摆角小于5°的情况下,把两个摆球从不同高度释放。
现象:摆球同步振动,说明单摆振动的周期和振幅无关。
2、周期与摆球质量无关
[演示2]将摆长相同,质量不同的摆球拉到同一高度释放。
现象:两摆球摆动是同步的,即说明单摆的周期与摆球质量无关。
那么就可以用这两个单摆去研究周期和振幅的关系了,在做之前还要明确一点,振幅是不是可任意取?这个实验主要是为研究属于简谐运动的单摆振动的周期,所以摆角不要超过5°。
3、刚才做过的两个演示实验,证实了单摆振动周期和摆球质量、振幅无关,那么周期和什么有关?由前所说这两个摆摆长相等,如果L不等,改变了这个条件会不会影响周期?
[演示3]
取摆长不同,两个摆球从某一高度同时释放,注意要α5°。
现象:两摆振动不同步,而且摆长越长,振动就越慢。这说明单摆振动和摆长有关。
具体有什么关系呢?实验,将摆长变为原来的四倍,再测周期。荷兰物理学家通过精确测量得到单摆周期公式:
4、单摆周期的这种与振幅无关的性质,叫做等时性。单摆的等时性是由伽利略首先发现的。(此处可以讲一下伽利略发现单摆等时性的小故事。)钟摆的摆动就具有这种性质,摆钟也是根据这个原理制成的,据说这种等时性最早是由伽利略从教堂的灯的摆动发现的。如果条件改变了,比如说(拿出摆钟展示)这个钟走得慢了,那么就要把摆长调整一下,应缩短L,使T减小;如果这个钟在北京走得好好的,带到广州去会怎么样?由于广州g小于北京的g值,所以T变大,钟也会走慢;同样,把钟带到月球上钟也会变慢。
5、思考:用空心铁球内部装满水做摆球,若球正下方有一小孔,水不断从孔中流出,从球内装满水到水流完为止的过程中,其振动周期的大小是______.
A.不变B.变大C.先变大后变小再回到原值D.先变小后变大再回到原值
四、几种非常规摆
1、双线摆
2、弧形槽内的摆
五、小结
1.单摆是一种理想化的振动模型,单摆振动的回复力是由摆球重力沿圆弧切线方向的分力mgsinθ提供的.
2.在摆角小于5°时,回复力F=-x.单摆的振动可看成简谐运动.
3.单摆的振动周期跟振幅、摆球质量的大小无关,跟摆长的平方根成正比,跟重力加速度的平方根成反比,即T=2π.
六、板书设计
摆线-结实的不可伸长的细线,线长比球的直径大得多
摆球-选用密度大的实心球
理论证明:(θ很小时)
①回复力F=mgsinθ
单②单摆在摆②F与x方向相反
摆角很小时③F=
实验验证:用砂摆的图象验证
③单摆的周期与振幅无关--等时性
T=2与摆长的二次方根成正比
与重力加速度的二次方根成反比
七、思考题
1.如图为一双线摆,二摆线长均为l,悬点在同一水平面上,使摆球A在垂直于纸面的方向上振动,当A球从平衡位置通过的同时,小球B在A球的正上方由静止放开,小球A、B刚好正碰,则小球B距小球A的平衡位置的距离等于多少?
2.如右图所示,光滑轨道的半径为2m,C点为圆心正下方的点,A、B两点与C点相距分别为6cm与2cm,a、b两小球分别从A、B两点由静止同时放开,则
两小球相碰的位置是_______.
A.C点B.C点右侧C.C点左侧D.不能确定
3.一个摆钟从甲地拿到乙地,它的钟摆摆动加快了,则下列对此现象的分析及调准方法的叙述中正确的是_______.
A.g甲g乙,将摆长适当增长B.g甲g乙,将摆长适当缩短
C.g甲
4.一个单摆挂在电梯内,发现单摆的周期增大为原来的2倍,可见电梯在做加速运动,加速度a为_______.
A.方向向上,大小为g/2B.方向向上,大小为3g/4
C.方向向下,大小为g/4D.方向向下,大小为3/4g
20xx高三物理复习知识点:直线运动
20xx高三物理复习知识点:直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
文章来源://m.jab88.com/j/68862.html
更多猜你喜欢
更多-
20xx高三物理复习知识点:简谐运动的能量阻尼振动 20xx高三物理复习知识点:简谐运动的能量阻尼振动 五、简谐运动的能量阻尼振动 1.知道振幅越大,振动的能量(总机械能)越大; 2.对单摆,应能根据机械能守恒定律进行定量计算; 3.对水平的弹簧振子,... - 20xx高三物理复习知识点 20xx高三物理复习知识点 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+... 小学数学复习教案 01-25
- 20xx高三物理复习知识点:单摆 20xx高三物理复习知识点:单摆 四、单摆 1.理解单摆振动的特点及它做简谐运动的条件; 2.观察演示实验,概括出周期的影响因素,培养学生由实验现象得出物理结论的能力。 3.掌握并学会应用单摆振动的周... 小学数学复习教案 01-25
- 20xx高三物理复习知识点:直线运动 20xx高三物理复习知识点:直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+... 高中曲线运动教案 02-18
最新更新
更多-
20xx高三物理知识点:力学和电磁学 - 九年级数学上4.1正弦和余弦(湘教版3份) 第4章锐角三角函数 4.1正弦和余弦 第1课时正弦及30°角的正弦值 1.通过具体实例,分析、比较后,知道“当直角三角形的锐角固定时,它的对边与斜边的比值也固定”的事实. 2.了解正弦的概念,知道特殊... 小学三年级数学教案 01-25
- 高中物理电磁感应公式总结 高中物理电磁感应公式总结 1、[感应电动势的大小计算公式] 1、E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2、E=BLV垂... 高中物理电磁感应教案 01-25
- 高考物理考前回扣教材-功与能 功与能 考点要求重温 考点20功和功率(Ⅱ) 考点21动能和动能定理(Ⅱ) 考点22重力做功与重力势能(Ⅱ) 考点23功能关系、机械能守恒定律及其应用(Ⅱ) 要点方法回顾 1.如何求解恒力的功、变力的... 高中物理功教案 01-25
- 二年级上册《两位数加两位数(进位加法)》教案冀教版 二年级上册《两位数加两位数(进位加法)》教案冀教版 教学目标 1、通过学生的交流,发现100以内两位数进位加法的多种计算方法,体验算法的多样性。 2、能选择合理的算法,比较熟练地进行计算。 3、明白“... 小学二年级音乐教案 01-25
- 《直线和圆的位置关系》学案 《直线和圆的位置关系》学案 教学目标 知识与技能:知道直线和圆相交、相切、相离的定义。 会根据定义来判断直线和圆的位置关系。 会根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆位置关系。 过程... 小学圆的教案 01-25
- 高中物理第一轮专题复习全套学案:选修3-5 考点内容要求考纲解读 动量、动量守恒定律及其应用Ⅱ1.动量守恒定律的应用是本部分的重点和难点,也是高考的热点,动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查. 2.动量守恒定律结合能量守... 高中生物一轮复习教案 01-25
- 《用频率估计概率》教学设计 《用频率估计概率》教学设计 本节课所体现的研究理论: 1.学习主体即学生,通过亲身经历数学活动过程获得具有个性特征的感性认识、情感体验以及数学意识; 2.课标指出:教学活动应建立在学生认知发展水平和已... 高中概率教案 01-25
- 二年级数学上册《求比一个数多(小)几的数是多少》教案 二年级数学上册《求比一个数多(小)几的数是多少》教案 教学内容:求比一个数多(少)几的数是多少。(教材第23、第24页) 教学目标:1.使学生学会用减法解决生活中的简单问题,会分析并解决“求比一个数多... 小学二年级数学教案 01-25
- 二年级下册《小小设计师》教案 二年级下册《小小设计师》教案 教学内容:教材第72~73页的内容。 教学目标: 1.能辨认生活中的简单图案是由一个图形经过轴对称或平移等运动得到的。能在正方形中拼贴或设计图形,将所设计的基本图形通过轴... 小学二年级音乐教案 01-25
- 20xx高考物理复习知识点:牛顿运动定律综合运用
