有关作梯形的辅助线常用方法
教学目标1、进一步掌握梯形的判定和性质;
2、初步掌握梯形中常见的辅助线的添加方法;
教学重点辅助线的添加方法
教学难点辅助线的添加方法
教学过程设计思路
由于在解决梯形的问题时,时常要通过对梯形的分割拼接或图形变换,将问题转化为三角形或平行四边形的问题来解决,因此在学习梯形时,应掌握作梯形的辅助线的常用方法。
【方法1】平移梯形的一腰
从梯形的一个顶点,作一腰的平行线,把梯形分成一个平行四边形和一个三角形.
例1、已知梯形ABCD中,AD//BC,AD=5cm,BC=8cm,AB=7cm,求另一腰CD的取值范围.
解:如图2,过D点作DE//AB,交BC于E点.
∵AD//BC,DE//AB,
∴四边形ABED是平行四边形
∴DE=AB=7cm,BE=AD=5cm,
CE=BC-BE=8cm-5cm=3cm
∵在△DEC中,DE-ECDCDE+EC
∴4cmDC10cm.
【方法2】作高法
从同一底的两个端点分别作梯形的高,把梯形分成一个矩形和两个直角三角形.
例2、在等腰梯形ABCD中,AD//BC,AB=CD,
∠ABC=60°,AD=3cm,BC=5cm,
求:(1)腰AB的长;(2)梯形ABCD的面积.
解:作AE⊥BC于E,
DF⊥BC于F,
又∵AD∥BC,
∴四边形AEFD是矩形,
EF=AD=3cm
∵AB=DC
∵在Rt△ABE中,∠B=60°,BE=1cm
∴AB=2BE=2cm,
∴.
【方法3】延长腰
延长梯形的两腰交于一点,得到两个三角形.
例3、已知:梯形ABCD中,AD//BC,∠B=∠C,
求证:四边形ABCD是等腰梯形.
证明:如图,分别延长BA、CD,设它们交于E点.
∵在△EBC中,∠B=∠C,
∴EB=EC
∵AD∥BC,
∴∠EAD=∠B,∠EDA=∠C,
而∠B=∠C,
∴在△EAD中,∠EAD=∠EDA
∴EA=ED
∴AB=DC,即四边形ABCD是等腰梯形.
【方法4】平移对角线
过底的一端作对角线的平行线,从而借助所得的平行四边形或三角形来研究梯形
例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面积.
解:如图,作DE∥AC,交BC的延长线于E点.
∵AD∥BC∴四边形ACED是平行四边形
∴BE=BC+CE=BC+AD=4+1=5,DE=AC=4
∵在△DBE中,BD=3,DE=4,BE=5
∴∠BDE=90°.
作DH⊥BC于H,则
.
【方法5】
以梯形一腰的中点为对称中心作某部分图形的对称图形.
例5、已知:梯形ABCD中,AD//BC,E为DC中点,EF⊥AB于F点,AB=3cm,EF=5cm,求梯形ABCD的面积.
解:如图,过E点作MN∥AB,分别交AD的延长线于M点,交BC于N点.
∵DE=EC,AD∥BC
∴△DEM≌△CNE
四边形ABNM是平行四边形
∵EF⊥AB,
∴S梯形ABCD=S□ABNM=AB×EF=15cm2.
例6、已知:如图13,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系?
解:AE=BE,理由如下:
延长AE,与BC延长线交于点F.
∵DE=CE,∠AED=∠CEF,
∠DAE=∠F
∴△ADE≌△FCE
∴AE=EF
∵AB⊥BC,∴BE=AE.
通过平移腰,得到两腰、上下底的差为边的三角形.
板书:
通过作高,得到以上下底的差、腰、高为三边的直角三角形.
板书:
得到含梯形的底和两角的三角形.
板书:
解决有关对角线、上下底和的问题.
板书:
尺规作图(讲义)
课前预习
1.尺规作图是指用没有刻度的直尺和圆规作图,其中“尺”指没有刻度的直尺,作用是作线;“规”指_________,作用是_______和_______.
2.读一读,背一背常见的几何语言,并在旁边画一画:
①连接AB;
②延长线段AB到点C,使BC=AB;
③延长线段AB交线段CD的延长线于点E;
④过点A作AB∥CD;
⑤过点A作AB⊥CD于点E.
知识点睛
1.基本作图:
①作一条线段等于已知线段;
②作一个角等于已知角;
③作已知角的角平分线.
书写作法时注意:________________,________________.
2.应用作图:
①______________________,设计作图方案;
②调用__________________完成图形.
精讲精练
1.作一条线段等于已知线段.
已知:如图,线段a.
求作:线段AB,使AB=a.
作法:(1)作射线AP;
(2)以_________为圆心,_______为半径作弧,交射线AP于点B.
___________即为所求.
2.已知线段a,b(),作一条线段,使它等于2a-b.
3.作一个角等于已知角.
已知:如图,∠ABC.
求作:∠DEF,使∠DEF=∠ABC.
作法:(1)作射线EF;
(2)以________为圆心,_______为半径作弧,交BA
于点M,交BC于点N;
(3)以____为圆心,____为半径作弧,交EF于点P;
(4)____________,__________作弧,交前弧于点D;
(5)作射线ED.
∠DEF______________.
证明:如图,连接________,________.
在___________和___________中,
∴____________________()
∴____________________
4.作一个已知角的倍角.
5.过直线外一点作已知直线的平行线.
已知:如图,A是直线MN外一点.
求作:直线AB,使AB∥MN.
6.已知两边及夹角作三角形.
已知:如图,线段m,n,∠α.
求作:△ABC,使∠A=∠α,AB=m,AC=n.
7.作已知角的角平分线.
已知:如图,∠AOB.
求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).
作法:(1)________________,__________________作弧,
交OA于点M,交OB于点N;
(2)分别以______,______为圆心,______________为半径作弧,两弧在________________交于点P;
(3)_________________________.
______________________________.
8.作已知角的四等分线.
已知:如图,∠AOB.
求作:射线OP,OQ,OM,使∠AOP=∠POQ=∠QOM=∠MOB(即OP,OQ,OM四等分∠AOB).
9.为打造“宜居城市”,某市拟在新竣工的扇形广场的内部修建一个音乐喷泉,要求音乐喷泉M在广场的两个入口P,Q的连线上(P,Q的位置如图所示),且到广场两边AB,AC的距离相等.请在题目给的原图上利用尺规作图作出音乐喷泉M的位置(不写作法,保留作图痕迹).
10.请画出草图,解决下列问题:
(1)在△ABC中,点D是AC边的中点,连接BD,若AB=5,BC=3,则△ABD和△BCD的周长的差是____________.
(2)在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,则∠AED和∠EDB的数量关系是________________________.
(3)已知:在△ABC中,BO平分∠ABC,CO平分∠ACB,BO与CO交于点O,过点O作DE∥BC交AB于D,交AC于E,则DE_____BD+CE(选填“”、“”或“=”).
(4)已知:在△ABC中,CE平分∠ACB交AB于E,过点E作ED∥AC交BC于D,过D作DF∥CE交AB于F,则∠EDF和∠BDF的数量关系是_____________________.
(5)已知:在△ABC中,∠A=80°,AB=AC,BD平分ABC交AC于点D,CE⊥BD交BD延长线于点E,则∠ECD=_______.
(6)若等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为40°,则此等腰三角形的顶角为______________.
【参考答案】
课前预习
1.圆规、度量、截取
2.略
知识点睛
1.点线取名称,作弧说心径
2.①画出草图
②基本作图
精讲精练
1.点A长线段AB图略
2.略
3.作法:(1)作射线EF;
(2)以点B为圆心,任意长为半径作弧,交BA于点
M,交BC于点N;
(3)以点E为圆心,BM长为半径作弧,交EF于点P;
(4)以点P为圆心,MN长为半径作弧,交前弧于点D;
(5)作射线ED.
即为所求.
证明:连接MN,DP.
在和中
4.略
5.略
6.略
7.(1)以点为圆心任意长为半径
(2)点M点N大于长内部
(3)作射线OP
射线OP即为所求
8.略
9.略
10.(1)2(2)(3)=
(4)(5)15°(6)50°或130°
特殊三角形(讲义)
课前预习
1.对几何图形,我们一般从边、角、特殊的线、周长及面积、对称性等来研究,以等腰三角形为例:
(1)边和角:等边对________、等角对________.
(2)特殊的线:(顶角的平分线、底边上的中线、底边上的高)____________________.
(3)面积:
h1+h2_____h(填“”、“”或“=”).
(4)对称性:等腰三角形的对称轴是__________________.
2.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°.
求证:.
知识点睛
1.等边三角形
①定义:_________________的三角形是等边三角形.
②性质:
边:等边三角形______________.
角:等边三角形______________.
线:等边三角形______________.
③判定:_________________的等腰三角形是等边三角形.
_________________的三角形是等边三角形.
2.直角三角形
性质:30°角所对的直角边___________________________.
直角三角形斜边的中线等于_____________________.
3.等腰直角三角形
①定义:有一个角是_____的等腰三角形是等腰直角三角形.
②性质:
边:等腰直角三角形_____________.
角:等腰直角三角形_____________.
线:等腰直角三角形____________,____________________
__________________________.
③判定:_______________的三角形是等腰直角三角形.
精讲精练
1.如图,以BC为边在正方形ABCD内部作等边△PBC,连接AP,DP,则∠PAD=_____________.
第1题图第2题图
2.如图,在△ABC中,D,E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数为_______________.
3.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________.
第3题图第4题图
4.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=2,则AD的长是()
A.4B.6C.8D.10
5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E.
求证:AE=2CE.
6.如图,∠BAC=∠BDC=90°,E为BC的中点,AE=5cm,则BC=______cm,DE=_______cm.
7.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.
求证:MN⊥BD.
8.如图,在锐角△ABC中,∠A=60°,BN,CM为高,P为BC的中点,连接MN,MP,NP,下列结论:①NP=MP;②当∠ABC=60°时,MN∥BC;③BN=2AN;④AN:AB=AM:AC.其中正确的有()
A.1个B.2个C.3个D.4个
9.已知:如图,在△ABC中,∠A=90°,AB=AC,D为BC的中点.E,F分别是AB,AC上的动点,且BE=AF.
求证:△DEF为等腰直角三角形.
10.现有两个全等的含30°,60°角的三角板ADE和三角板ABC按如图所示方式放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.
【参考答案】
课前预习
1.(1)等角、等边
(2)三线合一
(3)=
(4)顶角的角平分线(底边上的中线或底边上的高)所在直线
2.提示:见到线段的和差倍分,考虑截长补短.
证明:如图,延长BC到D,使CD=BC,连接AD.
∴BC=BD
∵∠ACB=90°,BC=CD
∴AB=AD
∵∠ACB=90°,∠BAC=30°
∴∠B=60°
∴∠D=60°
∴∠BAD=60°
∴BA=BD
∴BC=AB
知识点睛
1.三边都相等
②三边都相等,三个内角都是60°,三线合一
③有一个角是60°;有两个角是60°
2.30°角所对的直角边是斜边的一半
直角三角形斜边的中线等于斜边的一半
3.①直角
②两直角边相等,两底角都是45°,三线合一,直角三角形斜边上的中线等于斜边的一半
③有两个角是45°
精讲精练
1.15°
2.120°
3.8cm
4.B
5.证明略(提示,连接BE,由DE垂直平分AB得AE=BE,转移角可得∠EBC=30°,利用直角三角形性质可得AE=2CE)
6.10,5
7.证明略(提示:利用直角三角形斜边上的中线等于斜边的一半可得MD=MB,由三线合一可得MN⊥BD)
8.C
9.证明略(提示:连接AD,证明△ADF≌△BDE,转移边转移角证明△DEF为等腰直角三角形)
10.△EMC为等腰直角三角形
证明略(提示:连接AM,证明△MDE≌△MAC,转移边转移角证明△EMC为等腰直角三角形)
文章来源:http://m.jab88.com/j/60610.html
更多