一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“初一数学上册第五章一元一次方程复习教案”,仅供参考,欢迎大家阅读。
七年级(上)第五章复习一元一次方程
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式.
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程需要才成立.
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如,.
注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,.
注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.
(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果,那么.②等式具有传递性,即:如果,,那么.黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号
2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如中(的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示.
未知数:是指要求的数,未知数通常用、、等字母表示.如:关于、的方程中,、、是已知数,、是未知数.楷体五号
4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号
5.解方程求得方程的解的过程.
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.楷体五号
2.一元一次方程的形式楷体五号
标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式.
最简形式:方程(,,为已知数)叫一元一次方程的最简形式.
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.
(2)方程与方程是不同的,方程的解需要分类讨论完成.黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.
(4)合并同类项:把方程化成的形式.注意:字母和其指数不变.
(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解.注意:不要把分子、分母搞颠倒.体五号
2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.
3.关于x的方程axb解的情况⑴当a0时,x⑵当a,b0时,方程有无数多个解⑶当a0,b0时,方程无解
练习1、等式的概念和性质
1.下列说法不正确的是()
A.等式两边都加上一个数或一个等式,所得结果仍是等式.
B.等式两边都乘以一个数,所得结果仍是等式.C.等式两边都除以一个数,所得结果仍是等式.
D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.
2.根据等式的性质填空.
(1),则;(2),则;
(3),则;(4),则.
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
①;②;③;④;⑤;⑥;
⑦;⑧;⑨.
2.判断题.
(1)所有的方程一定是等式.()
(2)所有的等式一定是方程.()
(3)是方程.()
(4)不是方程.()
(5)不是等式,因为与不是相等关系.()
(6)是等式,也是方程.()
(7)“某数的3倍与6的差”的含义是,它是一个代数式,而不是方程.()
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x+5=12;(2)+=5;(3)2x+y=3;(4)y2+5y-6=0;(5)=2.
2.已知是关于的一元一次方程,求的值.
3.已知方程是关于x的一元一次方程,则m=_________
4.已知方程是一元一次方程,则;.
练习4、一元一次方程的解与解法
1)一元一次方程的解一)、根据方程解的具体数值来确定
1.若关于x的方程的解是,则代数式的值是_________。
2.若是方程的一个解,则.
3.某同学在解方程,把处的数字看错了,解得,该同学把看成了.
二)、根据方程解的个数情况来确定楷体五号
1.关于的方程,分别求,为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解.
2.已知关于的方程有无数多个解,那么,.
3.已知方程有两个不同的解,试求的值.
三)、根据方程定解的情况来确定楷体五号
1.若,为定值,关于的一元一次方程,无论为何值时,它的解总是,求和的值.
2.当取符合的任意数时,式子的值都是一个定值,其中,求,的值.
五号
四)、根据方程整数解的情况来确定楷体五号
1.已知为整数,关于的方程的解为正整数,求的值.
2.已知关于的方程有整数解,那么满足条件的所有整数=
3.若方程有一个正整数解,则取的最小正数是多少?并求出相应方程的解.
号
五)、根据方程公共解的情况来确定
1.若和是关于的同解方程,则的值是.
2.已知关于的方程,和方程有相同的解,求这个相同的解.
3.已知关于的方程仅有正整数解,并且和关于的方程是同解方程.若,,求出这个方程可能的解.
2)一元一次方程的解法一)、基本类型的一元一次方程的解法
1.解方程:(1)(2)-=1-(3)
二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1)(2)
(3)(4)
三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1)(2)(3)
四)、一元一次方程的技巧解法
1.解方程:(1)(2)
(3)(4)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式x-1和的值互为相反数.
4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().
A.0B.1C.-2D.-
10.方程│3x│=18的解的情况是().
A.有一个解是6B.有两个解,是±6
C.无解D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足().
A.a≠,b≠3B.a=,b=-3
C.a≠,b=-3D.a=,b≠-3
12.解方程时,把分母化为整数,得()。
A、B、C、D、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().
A.10分B.15分C.20分D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().
A.增加10%B.减少10%C.不增也不减D.减少1%
15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=()厘米.
A.1B.5C.3D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().
A.从甲组调12人去乙组B.从乙组调4人去甲组
C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.
A.3B.4C.5D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()
A.3个B.4个C.5个D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)
20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名ABCDEFGH
各站至H站
里程数(米)15001130910622402219720
例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数1~50人51~100人100人以上
票价5元4.5元4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
每个老师为了上好课需要写教案课件,大家应该开始写教案课件了。教案课件工作计划写好了之后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“一元一次方程”,大家不妨来参考。希望您能喜欢!
第6章一元一次方程测试题
姓名班级分数
一、填空题(每题3分,共30分)
1、如果,那么(根据)。
2、7与x的差的比x的3倍小6的方程是
3、若方程是关于X的一元一次方程,则k=
4、当X=时,代数式3(x-2)与2(2+x)的值相等
5、已知长方形的周长为40cm、长为xcm、宽为8cm,由题意列方程为
6、要将方程的分母去掉,在方程的两边最好同时
乘以
7、当x=时,代数式的值为0.
8、某商店老板将一件进价为800元的商品先提价50%;再打8折出销,则出销这件商品所获利润是元。
9、一件工作,甲队单独做12天可以完成,乙队单独做18天可以完成,若两队合做则天可以完成。
10、某省今年高考招生17万人,比去年增加了18%,设该省去年招生x万人,则可以列方程。
二、选择题(每题3分,共30分)
1、方程2x+1=0的解是()
(A)(B)(C)2(D)--2
2、已知下列方程中①、②0.3x=1、③、④
⑤x=6、⑥x+2y=0、⑦,其中是一元一次方程的有()
(A)2个(B)3个(C)4个(D)5个
3、如果方程是一个关于x的一元一次方程,那么m的取值范围是()
(A)(B)(C)m=--1(D)m=0
4、方程2(x—7)=x+4的解是()
(A)x=--5(B)x=5(C)x=14(D)x=18
5、对于等式,下列变形正确的是()
(A)(B)(C)(D)
6、下列等式变形错误的是()
(A)由a=b,得a+5=b+5(B)由a=b,得
(C)由x+2=y+2,得x=y(D)由-3x=-3y,得x=-y
7、方程的解是()
(A)x=3(B)(C)(D)x=-3
8、将方程去括号后正确的是()
(A)(B)
(C)(D)14x-1-12x+3=11
9、方程的解是()
(A)(B)(C)(D)
10、某工人计划每生产a个零件,现在实际每天生产b个零件,则生产m个零件提前的天数为()
(A)(B)(C)(D)
三、解答题(共40分)
1、解方程:(5分)
2、解方程:(5分)
3、解方程:(5分)
4、用一根直径为16cm的圆柱形铅柱,锻造5个直径为16cm铅球,问应裁取多长的铅柱?(球的体积为)(7分)
5、为了促进销售,某商场将一种商品按标价的9折出售,仍可获利10%,若该商品的标价是33元,则该商品的进价是多少元?
6、甲、乙两站间的路程为35千米,一辆慢车从甲站开往乙站,走了一个半小时后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?(10分)
每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。教案课件工作计划写好了之后,这样接下来工作才会更上一层楼!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“新教材初一数学第三章一元一次方程小结与复习(第二课时)”,仅供您在工作和学习中参考。
“自学互帮导学法”课堂教学设计文章来源:http://m.jab88.com/j/24933.html
更多