88教案网

初一数学上册第五章一元一次方程复习教案

一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“初一数学上册第五章一元一次方程复习教案”,仅供参考,欢迎大家阅读。

七年级(上)第五章复习一元一次方程
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式.
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程需要才成立.
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如,.
注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,.
注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.
(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果,那么.②等式具有传递性,即:如果,,那么.黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号
2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如中(的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示.
未知数:是指要求的数,未知数通常用、、等字母表示.如:关于、的方程中,、、是已知数,、是未知数.楷体五号
4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号
5.解方程求得方程的解的过程.
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.楷体五号
2.一元一次方程的形式楷体五号
标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式.
最简形式:方程(,,为已知数)叫一元一次方程的最简形式.
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.
(2)方程与方程是不同的,方程的解需要分类讨论完成.黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.
(4)合并同类项:把方程化成的形式.注意:字母和其指数不变.
(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解.注意:不要把分子、分母搞颠倒.体五号
2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.
3.关于x的方程axb解的情况⑴当a0时,x⑵当a,b0时,方程有无数多个解⑶当a0,b0时,方程无解

练习1、等式的概念和性质
1.下列说法不正确的是()
A.等式两边都加上一个数或一个等式,所得结果仍是等式.
B.等式两边都乘以一个数,所得结果仍是等式.C.等式两边都除以一个数,所得结果仍是等式.
D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.
2.根据等式的性质填空.
(1),则;(2),则;
(3),则;(4),则.
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
①;②;③;④;⑤;⑥;
⑦;⑧;⑨.
2.判断题.
(1)所有的方程一定是等式.()
(2)所有的等式一定是方程.()
(3)是方程.()
(4)不是方程.()
(5)不是等式,因为与不是相等关系.()
(6)是等式,也是方程.()
(7)“某数的3倍与6的差”的含义是,它是一个代数式,而不是方程.()
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x+5=12;(2)+=5;(3)2x+y=3;(4)y2+5y-6=0;(5)=2.
2.已知是关于的一元一次方程,求的值.
3.已知方程是关于x的一元一次方程,则m=_________
4.已知方程是一元一次方程,则;.
练习4、一元一次方程的解与解法
1)一元一次方程的解一)、根据方程解的具体数值来确定
1.若关于x的方程的解是,则代数式的值是_________。
2.若是方程的一个解,则.
3.某同学在解方程,把处的数字看错了,解得,该同学把看成了.
二)、根据方程解的个数情况来确定楷体五号
1.关于的方程,分别求,为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解.
2.已知关于的方程有无数多个解,那么,.
3.已知方程有两个不同的解,试求的值.
三)、根据方程定解的情况来确定楷体五号
1.若,为定值,关于的一元一次方程,无论为何值时,它的解总是,求和的值.

2.当取符合的任意数时,式子的值都是一个定值,其中,求,的值.

五号
四)、根据方程整数解的情况来确定楷体五号
1.已知为整数,关于的方程的解为正整数,求的值.

2.已知关于的方程有整数解,那么满足条件的所有整数=

3.若方程有一个正整数解,则取的最小正数是多少?并求出相应方程的解.

五)、根据方程公共解的情况来确定
1.若和是关于的同解方程,则的值是.
2.已知关于的方程,和方程有相同的解,求这个相同的解.

3.已知关于的方程仅有正整数解,并且和关于的方程是同解方程.若,,求出这个方程可能的解.
2)一元一次方程的解法一)、基本类型的一元一次方程的解法
1.解方程:(1)(2)-=1-(3)

二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1)(2)
(3)(4)

三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1)(2)(3)

四)、一元一次方程的技巧解法
1.解方程:(1)(2)

(3)(4)

一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式x-1和的值互为相反数.
4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().
A.0B.1C.-2D.-
10.方程│3x│=18的解的情况是().
A.有一个解是6B.有两个解,是±6
C.无解D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足().
A.a≠,b≠3B.a=,b=-3
C.a≠,b=-3D.a=,b≠-3
12.解方程时,把分母化为整数,得()。
A、B、C、D、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().
A.10分B.15分C.20分D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().
A.增加10%B.减少10%C.不增也不减D.减少1%
15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=()厘米.
A.1B.5C.3D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().
A.从甲组调12人去乙组B.从乙组调4人去甲组
C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.
A.3B.4C.5D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()
A.3个B.4个C.5个D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3)+3(2x-1)=5(x+3)

20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名ABCDEFGH
各站至H站
里程数(米)15001130910622402219720
例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数1~50人51~100人100人以上
票价5元4.5元4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)

延伸阅读

初一数学上册第三章一元一次方程教案设计


每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“初一数学上册第三章一元一次方程教案设计”,欢迎您阅读和收藏,并分享给身边的朋友!

教学过程
创设情境,提出问题

前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组。本节我们继续探究如何用方程组解决实际问题。

(出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg。饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg。你能否通过计算检验他的估计?
开门见山,直接提出本节学习目标,强化本章的中心问题。
以学生身边的实际问题展开讨论,突出数学与现实的联系。
探索分析,解决问题
学生思考、讨论。
判断李大叔的估计是否正确的方法有两种:
一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。
二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。
学生在比较探究后发现用方法二较简便。
设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量?
(有前面几节的知识准备,学生可以回答)
列方程组求解。
主要思路:
实际问题→(设未知数,列方程组)→数学问题(二元一次方程组)
学生先独立思考,然后师生共同讨论解题过程。
解:设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg。
找出相等关系列方程组
解这个方程组,得

这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg和5kg。饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确。
引导学生探寻解题思路,并对各种方法进行比较,方法一主要是估算的运用,而方法二是方程思想的应用。
分步到位,渗透模型化的思想。

规范解题步骤,培养学生有条理地思考、表达的习惯。
让学生认识到检验的重要性,并学会正确作答。
拓广探索,比较分析

设问2:以上问题还能列出不同的方程组吗?结果是否一致?
个别学生可能会列出如下方程组

但结果一致。
比较分析,加深对方程组的认识。
课堂练习,反馈调控
《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食。树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗?
教师巡视、指导,师生共同讲评。
出示古典名题,一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。
课堂小结,知识梳理

提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?
学生思考后回答、整理:

①设未知数。
②找相等关系。

③列方程组。

④检验并作答。
以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构。
训练口头表达能力,养成及时归纳总结的良好学习习惯。
布置作业,自我评价

①必做题:课本第107页习题3.4第2、3、5题。

②选做题:课本第107页习题3.4第8题。

③备选题:

(1)解方程组:

(2)据《新华日报》消息,巴西医生马廷恩经过10年苦心研究后得出结论:卷入腐败行为的人容易得癌症、心肌梗塞、过敏症、脑溢血、心脏病等。如果将犯有贪污受贿的580官员与600名廉洁官员进行比较,可发现,后者的健康人数多272名,两者患病(致死)者共有444人,试问犯有贪污受贿罪的官员与廉洁官员的健康人数各占百分之几?

(3)《希腊文集》中有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:“驴和骡子驮着货物并排走在路上。驴不住地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多。’问驴和骡子各驮几口袋货物?”

你能用方程组来解这个问题吗?

为满足不同学生的发展需求,在保证基本要求的同时,为更多有数学学习需求的学生提供机会和资料,分层次布置作业。备选题供教师参考。
从实际问题出发,通过分析实际问题中的数量关系,列出二元一次方程组这种数学模型,通过对方程组解的检验,让学生认识到检验不仅要检查求得的解是否适合方程组中的每一个方程,而且还要考查所得的解答是否符合实际问题的要求,初步体验用方程组解决实际问题的全过程。
在重视方程的应用价值的同时关注其文化内涵。给出《一千零一夜》《希腊文集》中的数学名题,使学生在数学知识和能力得到提高的同时能够感受到数学文化的熏陶。
________________________________________

解一元一次方程


老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“解一元一次方程”,仅供参考,希望能为您提供参考!

课题3.3解一元一次方程—去括号与去分母课时本学期
第课时日期
课型新授主备人复备人审核人
学习
目标知识与能力:进一步掌握列一元一次方程解应用题的方法步骤.
过程与方法:通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.
情感态度与价值观:培养学生自主探究和合作交流意识和能力,体会数学的应用价值.
重点
难点重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程,并会解方程.
难点:找出能够表示问题全部含义的相等关系,列出方程.
关键:找出能够表示问题全部含义的相等关系.
教学流程师生活动时间复备标注
一、复习引入:1.解方程:5X+2(3X-3)=11-(X+5)
2.行程问题中的基本数量关系是什么?
路程=速度×时间,可变形为:速度=.
3.相遇问题或追及问题中所走路程的关系?
相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)
追及问题:快速行进路程=慢速行进路程+原来两者间的距离;或快速行进路程-慢速行进路程=原路程(原来两者间的距离)
二、新授:
例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.
分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的速度之间的关系如何?
顺流行驶速度=船在静水中的速度+水流速度
逆流行驶速度=船在静水中的速度-水流速度
(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).
(3)问题中的相等关系是什么?
解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括号,得2x+6=2.5x-7.5
移项及合并,得-0.5x=-13.5
系数化为1,得x=27
答:船在静水中的平均速度为27千米/时.
说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.
例3:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
分析:
已知条件:(1)分配生产螺钉和生产螺母人数共22名.
(2)每人每天平均生产螺钉1200个,或螺母2000个.
(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?
螺母的数量应是螺钉数量的两倍,这正是相等关系.

解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母2000(22-x)个,由相等关系,列方程
2×1200x=2000(22-x)
去括号,得2400x=44000-2000x
移项,合并,得4400x=44000
x=10
所以生产螺母的人数为22-x=12
答:应分配10名工人生产螺钉,12名工人生产螺母.
本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.
三、巩固练习课本第102页第7题.
解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:
2(x+24)=3(x-24)
去括号,得x+68=3x-72
移项,合并,得-x=-140
系数化为1,得x=840
两城之间的航程为3(x-24)=2448
答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.
解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?
分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.
在这个问题中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:
-24=+24
化简,得x-24=+24
移项,合并,得x=48
系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)
比较两种方法,第一种方法容易列方程,所以正确设元也很关键.
四、课堂达标练习
1.名校课堂59页3、4、7、
五、课堂小结:通过以上问题的讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,虽然不必写出检验过程,但这一步绝不是可有可无的.
六、作业:课本第102页习题3.3第5、题.
课件出示问题1:

教师引导,启发学生找出相等关系并列出相应代数式,从而得出方程

教师点拨进一步对此题进行巩固,培养学生归纳概括的能力

解答过程按课本,可由学生口述,教师板书.

求解一元一次方程


每个老师在上课前需要规划好教案课件,大家在细心筹备教案课件中。只有写好教案课件计划,才能促进我们的工作进一步发展!你们到底知道多少优秀的教案课件呢?以下是小编为大家收集的“求解一元一次方程”但愿对您的学习工作带来帮助。

2求解一元一次方程

1.移项法则
(1)定义
把原方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.
例如:
(2)移项的依据:等式的基本性质1.
辨误区移项时的注意事项
①移项是将方程中某一项从方程的一边移到另一边,不是左边或右边某些项的交换;②移项时要变号,不能出现不变号就移项的情况.
【例1】下列方程中,移项正确的是().
A.方程10-x=4变形为-x=10-4
B.方程6x-2=4x+4变形为6x-4x=4+2
C.方程10=2x+4-x变形为10=2x-x+4
D.方程3-4x=x+8变形为x-4x=8-3
解析:选项A中应变形为-x=4-10;选项C中不是移项,只是交换了两项的位置,正确的移项是-2x+x=4-10;选项D中应变形为-4x-x=8-3,只有选项B是正确的.
答案:B
2.解一元一次方程的一般步骤
(1)解一元一次方程的步骤
去分母→去括号→移项→合并同类项→未知数的系数化为1.
上述步骤中,都是一元一次方程的变形方法,经过这些变形,方程变得简单易解,而方程的解并未改变.
(2)解一元一次方程的具体做法
变形
名称具体做法变形依据注意事项
去分母两边同时乘各分母的最小公倍数等式的基本性质2不要漏乘不含分母的项
去括号先去小括号,再去中括号,最后去大括号去括号法则、乘法分配律不要漏乘括号内的每一项,注意符号
移项含有未知数的项移到方程的一边,常数项移到另一边等式的基本性质1移项要变号,不要漏项
合并
同类
项把方程化成ax=b(a≠0)的形式合并同类项法则系数相加,字母及指数不变
系数
化为1两边都除以未知数的系数等式的基本性质2分子、分母不要颠倒
【例2-1】解方程:4x+5=-3+2x.
分析:按以下步骤解方程:
解:移项,得4x-2x=-3-5.
合并同类项,得2x=-8.
系数化为1,得x=-4.
【例2-2】解方程65100(y-1)=37100(y+1)+0.1.
分析:方程中既含有分母,又含有括号,根据方程的形式特点,还是先去分母比较简便.
解:去分母,得65(y-1)=37(y+1)+10.
去括号,得65y-65=37y+37+10.
移项,得65y-37y=37+10+65.
合并同类项,得28y=112.
系数化为1,得y=4.
点评:解一元一次方程,要注意根据方程的特点灵活运用解一元一次方程的一般步骤,不一定非按这个“一般步骤”的顺序,适合先去分母的要先去分母,适合先去括号的要先去括号,去分母、去括号时,注意不要出现漏乘,尤其是注意不要漏乘常数项,移项时要注意变号.
3.分子、分母中含有小数的一元一次方程的解法
当分子、分母中含有小数时,一般是先根据分数的基本性质,将分数的分子、分母同乘以一个适当的整数,将其中的小数化为整数再解方程.需要注意的是这一步变形根据的是分数的基本性质,而不是等式的基本性质;变形时是分数的分子、分母同乘以一个适当的整数,而不是在方程的两边同乘以一个整数.
【例3】解方程0.4x+0.90.5-0.03+0.02x0.03=1.
分析:原方程的分子、分母中都含有小数,利用分数的基本性质,方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能将方程中的所有小数化为整数.
解:原方程可化为4x+95-3+2x3=1.
去分母,得3(4x+9)-5(3+2x)=15.
去括号,得12x+27-15-10x=15.
移项、合并同类项,得2x=3.
系数化为1,得x=32.
4.带多层括号的一元一次方程的解法
一元一次方程,除个别题外,一般都有几层括号,一般方法是按照“由内到外”的顺序去括号,即先去小括号,再去中括号,最后去大括号.每去一层括号合并同类项一次,以简化运算.
有时可根据方程的特征,灵活选择去括号的顺序,从而达到快速解题的目的.
在解具体的某个方程时,要仔细观察方程的特点,根据方程的特点灵活选择解法.
【例4】233212(x-1)-3-3=3.
分析:若先去小括号,再去中括号,再去大括号,然后再运算比较麻烦.注意到32×23=1,因而可先去大括号,在去大括号的同时也去掉了中括号,这样既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得12(x-1)-3-2=3.
去小括号,得12x-12-3-2=3.
移项,得12x=12+3+2+3.
合并同类项,得12x=172.
系数化为1,得x=17.
5.含有字母系数的一元一次方程的解法
含有字母系数的一元一次方程的解法与一般一元一次方程的解法步骤完全相同:去分母→去括号→移项→合并同类项→系数化为1.要特别注意的是系数化为1时,当未知数的系数是字母时,要分情况讨论.
关于x的方程ax=b的解的情况:
①当a≠0时,方程有唯一的解x=ba;②当a=0,且b=0时,方程有无数解;③当a=0,且b≠0时,方程无解.
【例5】解关于x的方程3x-2=mx.
分析:本题中未知数是x,m是已知数,先通过移项、合并同类项把方程变形为ax=b的形式,再讨论.
解:移项,得3x-mx=2,
即(3-m)x=2.
当3-m≠0时,两边都除以3-m,
得x=23-m.
当3-m=0时,则有0x=2,此时,方程无解.
点评:解含有字母系数的方程要不要讨论,关键是看解方程的最后一步,在系数化为1的时候,当未知数的系数是数字时,不用讨论,当未知数的系数含有字母时,必须分情况讨论.

文章来源:http://m.jab88.com/j/41581.html

更多

最新更新

更多