88教案网

圆心角、弧、弦、弦心距

每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“圆心角、弧、弦、弦心距”,相信能对大家有所帮助。

教学目标:

1、使学生理解并掌握1°的弧的概念;

2、使学生能够熟练地运用本小节的知识进行有关的计算.

3、继续培养学生观察、比较、概括的能力;

4、培养学生准确地简述自己观点的能力和计算能力.

教学重点:

圆心角、弧、弦、弦心距的之间相等关系定理.

教学难点:

理解1°的概念.

教学过程:

一、新课引入:

同学们,上节课我们学习了圆心角、弧、弦、弦心距之间的关系定理.在同圆或等圆中,相等的圆心角所对的弧相等.如果把顶点在圆心的周角等分成360份,得到每一份圆心角是1°,那么1°的圆心角与它们对的弧的度数之间有怎样的关系呢?教师板书:“9.4圆心角、弧、弦、弦心距之间的关系(二)”,本节课我们专门来研究圆心角的度数和它所对的弧的度数之间的关系.根据学生的已有知识水平点题,教师有意识创设问题情境,一方面激发学生的情趣,另一方面把学生的注意力引到所要讲的教学内容上来.

二、新课讲解:

为了使学生真正掌握圆心角、弧、弦、弦心距之间的关系的定理,一开课教师提问以下问题:

1.什么叫圆心角?什么叫弦心距?

2.圆绕着圆心旋转多少度角,才能够与原来的图形重合.

3.如果两个圆心角相等,那么它们对的弧相等的前提条件是什么?

接下来教师在事先准备好的圆上,一边画图示范,一边讲解:“我把顶点在圆心的周角分成360等份”,提问:“得到每一份的圆心角是多少度?”引导学生观察思考,“顶点为圆心的周角360等份对应的整个圆也被分成360等分的弧,这每一份弧又是多少度呢?”学生回答,教师板书:

(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

(三)重点、难点的学习与目标完成过程

学生在教师的启发下得到了1°的弧的概念,为了进一步强化学生对1°的弧的概念的理解,巩固提问:

1.度数是2°的圆心角所对的弧的度数是多少?为什么?

2.3°的圆心角对着多少度的弧,3°的弧对着多少度的圆心角?

3.n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?

通过学生回答,学生评价,再让学生观察和类比,可让学生自己说出圆心角的度数和它所对的弧的度数相等.jAB88.coM

如果学生说的很准确,教师不要重复,只把它完整地写在黑板上就可以了.

对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.

接下来进行例题教学.

径为2cm,求AB的长.

分析:由于弦AB所对的劣弧为圆的,所以的度数为120°,

由于圆心角的度数等于它们对的弧的度数,所以∠AOB的度数应等于的度数,即∠AOB=120°.

作OC⊥AB于C可构造出直角三角AOC,然后用垂径定理和勾股定理,或用垂径定理和解直角三角形,就可求出AC的长,最后AB=2AC又求出弦长.分析后由学生回答教师板书:

解:由题意可知的度数为120°,

∴∠AOB=120°.

作OC⊥AB,垂足为C,则∠AOC=60°,

又∵AC=BC,

在Rt△AOC中,

AC=OAsin60°=2×sin60°

对于这道题的解决方法,教师应该给学生充分思考时间,教师要在分析解决这个例题中,向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.

例3如图7-26,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOC的度数.

分析:欲求∠BOC的度数,只要设法求出∠OCE的度数,由已知=40°,可以想到EC的度数等于它们对的圆心角的度数,所以连结OE,构造圆心角∠COE,然后又由等腰三角形COE中,求出∠C的度数,最后根据CE∥AB,得到∠BOC的度数.

具体解题,略.

对于以上两个例题,教师要善于调动学生积极主动地参与到教学活动中,引导用一题多解来考虑这个问题,分析思路教师尽可能不代替,让学生去分析并写出解题过程,此时教师只需强调解题要规范,书写要准确即可.

由例3的计算题,改变成一个证明题.

已知:如图7-27,AB和CD是两条直径,弦CE∥AB,求证:=.

教师给出这道题的目的,是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后教师概括总结各自方法.

练习.教材P.90中1、2.

教师指导学生在书上完成.

三、课堂小结:

本节课学到的知识点:

1、1°的弧的定义.

2、圆心角的度数和它们对的弧的度数相等.

本节所学到的方法:

1、证明圆心角、弧、弦、弦心距相等的问题,只要满足“在同圆或等圆中”的一组量相等,就可得到所要求的结论;

2、求弧的度数往往想它所对的圆心角度数;

3、解决弦、弧有关问题,常用的辅助线是作半径、弦心距等,构造直角三角形去解决.

四、布置作业:

教材P.100中5.

教材P102中B组2题.

相关阅读

《弧弦圆心角之间的关系》教案设计


《弧弦圆心角之间的关系》教案设计

教学目标:
知识与能力:
(1)了解圆心角的概念。
(2)掌握弧弦圆心角的定理和推论。
(3)能灵活应用弧弦圆心角定理及推论解决问题。
过程与方法:
(1)复习旋转的知识,得到圆心角的概念,然后用圆心角和旋转探索圆心角定理,最后应用它解决一些问题。
(2)在教学过程中,学生与同伴交流,提高学生的合作交流意识。
情感态度价值观:
经历探索弧弦圆心角定理及其结论的过程,提高学生的数学能力。
重点:弧弦圆心角定理及推论的应用。
难点:定理及其推论的探索与应用。
教学环节:
一、导语
1、判断圆是中心对称图形吗?对称中心在哪里?
二、探究
(一)圆心角的定义
我们把顶点在圆心的角叫做圆心角。
1、判别下列各图中的角是不是圆心角,并说明理由。
(二)弧、弦、圆心角定理
2、(1)将∠AOB=∠A′OB′,将∠A′OB′旋转到∠AOB的位置,它能否与∠AOB完全重合?
(2)如能重合,你会发现哪些等量关系?为什么?
(3)如果两个角在两个等圆中,能否得到相似的结论?
综合上述所得,在同圆或等圆中,圆心角、弧、弦之间的关系定理。
(4)分析定理,去掉“在同圆或等圆中”条件,行吗?
3、定理拓展:
(1)在同圆或等圆中,如果两条弧相等,它们所对的圆心角,所对的弦也分别相等吗?
(2)在同圆或等圆中,如果两条弦相等,它们所对的圆心角,所对的弧也分别相等吗?
综上所得,在同圆或等圆中,两个圆心角,两条弧,两条弦,其中有一组量相等,其余各组量也分别相等。
(三)定理应用
1.判断下列说法是否正确。
(1)相等的圆心角所对的弧相等。()
(2)相等的弧所对的弦相等。()
(3)相等的弦所对的弧相等。()
(4)弦相等所对的圆心角相等。()
(5)等弧所对的圆心角相等。()
《弧弦圆心角之间的关系》教学设计
2、如图,AB、CD是⊙O的两条弦。
(1)如果AB=CD,那么,。
(2)如果弧AB=弧CD,那么,。
(3)如果∠AOB=∠COD,那么,。
(4)如果AB=CD,OE⊥AB于E,
OF⊥CD于F,OE与OF相等吗?为什么?
(四)典例分析
例1如图,在⊙O中,AB=AC,∠ACB=60°,
《弧弦圆心角之间的关系》教学设计
求证∠AOB=∠BOC=∠AOC。
证明:∵AB=AC
∴AB=AC,△ABC是等腰三角形
又∠ACB=60°
∴△ABC是等边三角形,AB=BC=CA
∴∠AOB=∠BOC=∠AOC
例2、如图,AB是⊙O的直径,BC=CD=DE,∠COD=35°,求∠AOE的度数。
《弧弦圆心角之间的关系》教学设计
证明:∵BC=CD=DE
∴∠COB=∠COD=∠DOE=35°
∴∠AOE=1800-∠COB-∠COD-∠DOE
=750
(五)小结归纳
1、圆心角的概念。
2、在同圆或等圆中,两个圆心角,两条弦,两条弧三个量之间的关系。
(六)作业设计
作业:复习巩固作业和综合应用为全体学生做,拓广探索为成绩中上游学生做。
板书设计:
课题圆心角、弧、弦之间的关系
关系定理应用
1、2、

《圆心角》集体备课教案


《圆心角》集体备课教案

教学目标:
知识目标1.经历探索圆的中心对称性和旋转不变性的过程;.
2.理解圆心角的概念,并掌握圆心角定理.
3.理解“弧的度数等于它所对的圆心角的度数”这一性质.
能力目标体验利用旋转变换来研究圆的性质的思想方法,进一步培养学生观察、猜
想、证明及应用新知解决问题的能力。
情感目标用生活的实例激发学生学习数学的浓厚兴趣,体验数学与生活的密切联
系,坚定学好数学的信心,进一步培养学生尊重知识、尊重科学,热爱
生活的积极心态。
教学重点:圆心角定理
教学难点:根据圆的旋转不变性推导出圆心角定理
教学过程:
一、设疑引新
你可曾想过:水杯的盖子为什么做成圆形?利用了圆的什么性质?
前面我们已经探究了圆的轴对称性,利用这一性质我们得到了垂径定理及逆定理,它帮助解决了圆的许多问题,那么圆还有哪些性质呢?
二、探究新知
1、圆绕圆心旋转180°后,仍与原来的圆重合——圆是中心对称图形,圆心是对称中心。
2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合——圆的旋转不变性。
集体备课3.1《圆心角》解决课前疑问。
3、顶点在圆心的角叫圆心角。如图,集体备课3.1《圆心角》就是一个圆心角.
判别下列各图中的角是不是圆心角,并说明理由。
4、探究圆心角定理:
集体备课3.1《圆心角》(1)实验操作:设集体备课3.1《圆心角》,把∠COD连同集体备课3.1《圆心角》、弦CD
绕圆心O旋转,使OA与OC重合,结果发现OB与OD重合,
弦AB与弦CD重合,集体备课3.1《圆心角》和集体备课3.1《圆心角》重合.
(2)让学生猜想结论,并证明。
(3)同圆变等圆,结论成立。
5、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等(补充)。
几何表述:∵∠AOB=∠COD∴集体备课3.1《圆心角》=集体备课3.1《圆心角》,AB=CD,OE=OF
分析定理:.去掉“在同圆或等圆中”定理还成立吗?
反例:两个同心圆,显然弦AB与弦CD不相等,集体备课3.1《圆心角》与集体备课3.1《圆心角》不相等。
集体备课3.1《圆心角》提醒学生注意:定理的成立必须有大前提“在同圆或等圆中”.
6、应用新知:
例已知:如图,∠1=∠2.求证:集体备课3.1《圆心角》
【变式】已知:如图,∠1=∠2.
求证:AC=BD.
7、再探新知:你能将⊙O二等分吗?
用直尺和圆规你能把⊙O四等分吗?
你能将任意一个圆六等分吗?
若按刚才这种方法把一个圆分成360份,则每一份的圆心角的度数是1,因为相等的圆心角所对的弧相等,所以每一份的圆心角所对的弧也相等。
我们把1的圆心角所对的弧叫做1的弧.。弧的度数等于它所对的圆心角的度数.
集体备课3.1《圆心角》写法:若∠COD=80°,则CD的度数是80°
注:不可写成集体备课3.1《圆心角》=∠COD=80°,但可写成集体备课3.1《圆心角》=m∠COD=80°
8、巩固新知:如图:已知在⊙O中,∠AOB=45°,∠OBC=35°,
求弧AB的度数和弧BC的度数。
9、拓展提高:
集体备课3.1《圆心角》三、课堂小结
通过本节课的学习,你对圆有哪些新的认识?
1.圆是中心对称图形,圆具有旋转不变性.
2.、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等
3、弧的度数:
1的圆心角所对的弧叫做1的弧。
弧的度数等于它所对的圆心角的度数.
四、作业布置
作业本3.3.1节

圆心角和圆周角


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容《圆心角和圆周角》,仅供参考,欢迎大家阅读。

§27.2圆心角和圆周角

一、课题§27.2圆心角和圆周角

二、教学目标

1.经历探索圆心角的性质的过程.

2.理解圆心角的概念及相关的性质.

三、教学重点和难点

重点:经历探索圆心角性质的过程.

难点:圆心角性质的应用.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程设计

(一)、新授

定点在圆心的角叫作圆心角.

在幻灯片上展示圆心角,并作详细说明

一起探究

依照课本上,让学生探索圆心角、弦、弧的关系,得出结论:

在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧也相等;相等的弦或相等的弧所对的圆心角相等.

在多媒体上,利用旋转讲解这部分知识.

例;如图,在⊙O中,已知,请说明AC=BD.

分析:此题是在一个圆中,由弧相等,得出弦相等,而圆心角的性质把这两者结合在一起,我们要通过圆心角来建立两者的关系.

(三)、小结

圆心角的性质把弧、弦、圆心角三者结合在一起,使三者互相依存,在以后的做题中,要注意利用三者间的这种关系.

七、练习设计

P9习题1、2、3.

八、教学后记

文章来源:http://m.jab88.com/j/90238.html

更多

最新更新

更多