每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“八年级上册《分式的乘除法》知识点汇总(鲁教版)”,希望能为您提供更多的参考。
八年级上册《分式的乘除法》知识点汇总(鲁教版)
一、分式的定义:
一般地,如果A,B表示两个整数,并且B中含有字母,那么式子
二、与分式有关的条件
①分式有意义:分母不为0(B?0)
②分式无意义:分母为0(B?0)
③分式值为0:分子为0且分母不为0(?A叫做分式,A为分子,B为分母。B?A?0)
?B?0
?A?0?A?0或?)B?0B?0??
?A?0?A?0或?)
?B?0?B?0④分式值为正或大于0:分子分母同号(?⑤分式值为负或小于0:分子分母异号(?
⑥分式值为1:分子分母值相等(A=B)
⑦分式值为-1:分子分母值互为相反数(A+B=0)
三、分式的基本性质
(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:AA?CAA?C?,?,其中A、B、C是整式,C?0。BB?CBB?C
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:A?A?AA?????B?BB?B
注意:在应用分式的基本性质时,要注意C?0这个限制条件和隐含条件B?0。
四、分式的约分
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约
去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。分子分母公因式的确定方法:
1)系数取分子、分母系数的最大公约数作为公因式的系数.
2)取各个公因式的最低次幂作为公因式的因式.
3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.
五、分式的通分
1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)
2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:
1.系数取各个分母系数的最小公倍数作为最简公分母的系数.
2.取各个公因式的最高次幂作为最简公分母的因式.
3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.
3.“两大类三类型”
通分“两大类”指的是:一是分母是单项式;二是分母是多项式
“两大类”下的“三类型”:“二、三”型,“二,四”型,“四、六”型
1)“二、三”型:指几个分母之间没有关系,最简公分母就是他们的乘积;
2)“二,四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母;
3)“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母既要有独特的因式,
也应包括相同的因式
4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。
六、分式的四则运算与分式的乘方
①分式的乘除法法则:aca?c??bdb?d
acada?d分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为:????bdbcb?c分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:
an?a?②分式的乘方:把分子、分母分别乘方。式子表示为:???nb?b?
③分式的加减法则:
1)同分母分式加减法:分母不变,把分子相加减。式子表示为:naba?b??ccc
acad?bc??bdbd2)异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:
3)两种类型:一是分式间的加减;二是整式与分式的加减(整式的分母为1)
注意:整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
④分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对
有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
七、整数指数幂
①引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指
数幂一样适用。即:
am?an?am?nam
n??nn?amn?ab??anbnam?an?am?n(a?0)1an?a??n0???na?na?0)a?1(a?0)(任何不等于零的数的零次幂都等于1)ab?b?
其中m,n均为整数。
八、分式方程
1.分式方程:指含分式,且分母中含有未知数的方程
2.解分式方程的步骤:
(1)能化简的先化简
(2)去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)
(3)解整式方程,得到整式方程的解。
(4)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
注意:产生增根的条件是①是得到的整式方程的解;②代入最简公分母后值为0。
九、列分式方程——基本步骤:审,设,列,解,答(跟一元一次不等式组的应用题解法一样)
①审—仔细审题,找出等量关系。
②设—合理设未知数。
③列—根据等量关系列出方程(组)。
④解—解出方程(组)。注意检验
⑤答—答题。
鲁教版八年级数学上册全册知识点汇总
第一章生活中的轴对称
1.1轴对称现象
1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径(×)直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);
②角的对称轴是它的角平分线(×)角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);
③正方形的对角线是正方形的对称轴(×)对角线也是线段而不是直线。
2.轴对称:(1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:
①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;
②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形
有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;
(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
5.30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。
1.3探索轴对称的性质
1.对应点所连的线段被对称轴垂直平分;
2.轴对称图形对应线段相等,对应角相等。
1.4利用轴对称设计图案
1.画点A关于直线L的对应点A:1、过点A作对称轴L的垂线,垂足为B
2、延长AB至A,使得BA=AB
3、点A就是点A关于直线L的对应点
2.画线段AB关于L的对应线段AB:1、过点A作对称轴L的垂线AA,使CA=CA
2、过点A作对称轴L的垂线BB,使DB=DB
3、连接AB,AB即是关于直线L的对应线段。
第二章勾股定理
2.1探索勾股定理
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。(一个直角三角形,以它的两直角边为边长所作的两正方形面积之和等于以它的斜边为边长所作的正方形的面积)
注意:电视机有多少英寸,指的是电视屏幕对角线的长度。
2.2勾股数
1.勾股定理的逆定理:若三角形的三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形。
在ABC中,a,b,c为三边长,其中c为最大边,
若a2+b2=c2,则ABC为直角三角形;
若a2+b2c2,则ABC为锐角三角形;
若a2+b2c2,则ABC为钝角三角形。
2.勾股数:满足a2+b2=c2的三个正整数(即能构成一个直角三角形三边的一组正整数),称为勾股数(勾股数是正整数)。
规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数(即同乘以或除以同一个正数),仍能够成直角三角形。
一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。
常用勾股数:3,4,5(三四五)9,12,15(3,4,5的三倍)5,12,13(5.12记一生)
8,15,17(八月十五在一起)6,8,10(3,4,5的两倍)7,24,25(企鹅是二百五)
勾股数须知:连续的勾股数只有3,4,5连续的偶数勾股数只有6,8,10
第三章实数
3.1无理数
有理数总可以用有限小数或无限循环小数表示。反过来,任何有限小数或无限循环小数也都是有理数。
1.无理数的概念:无限不循环小数叫做无理数(两个条件:①无限②不循环)。
练习:下列说法正确的是()
(A)无限小数是无理数;
(B)带根号的数是无理数;
(C)无理数是开方开不尽的数;
(D)无理数包括正无理数和负无理数
2.无理数:(1)特定意义的数,如∏;
(2)特定结构的数;如2.02002000200002…
(3)带有根号的数,但根号下的数字开不尽方,如
3.分类:正无理数和负无理数。
3.2平方根
1.定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫做二次方根)。
2.表示方法:正数a有两个平方根,一个是a的算术平方根[转载]鲁教版初二数学知识点(上);另一个是-[转载]鲁教版初二数学知识点(上),它们是一对互为相反数,合起来是
3.开平方:求一个数a的平方根的运算,叫做开平方(其中,a叫被开方数,且a为非负数)。开平方与乘方是互为逆运算。
判断:(1)2是4的平方根()
(2)-2是4的平方根()
(3)4的平方根是2()
(4)4的算术平方根是-2()
(5)17的平方根是[转载]鲁教版初二数学知识点(上)()
(6)-16的平方根是-4()
小结:一个正数有两个平方根,它们互为相反数;
0只有一个平方根,它是0本身;
负数没有平方根。
3.3立方根
1.定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根(三次方根)。
2.性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3.开立方:求一个数a的立方根的运算,叫做开立方(其中,a叫被开方数)。
4.平方根与立方根的联系与区别:
(1)联系:①0的平方根、立方根都有一个是0;
②平方根、立方根都是开方的结果。
(2)区别:①定义不同;②个数不同;③表示方法不同;④被开方数的取值范围不同。
3.4方根的估算
1.估算无理数的方法是(1)通过平方运算,采用“夹逼法”,确定真值所在范围;(2)根据问题中误差允许的范围,在真值的范围内取出近似值。
2.“精确到”与“误差小于”意义不同。如精确到1m是四舍五入到个位,答案惟一;误差小于1m,答案在真值左右1m都符合题意,答案不惟一。在本章中误差小于1m就是估算到个位,误差小于10m就是估算到十位。
3.5用计算器开方
3.6实数
知识回顾:1、统称有理数;
2、叫做无理数;
3、有理数分为小数和小数;
4、有理数包括﹑零﹑。
1.实数:有理数和无理数统称为实数(正实数,0和负实数)。
2.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.每一个实数都可以用数轴上的点来表示,反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
例:a是一个实数,它的相反数是________,绝对值是________。
如果a≠0,那么它的倒数是________。
第四章概率的初步认识
4.1可能性的大小
游戏对双方公平是指双方获胜的可能性相同。
任意掷一枚均匀的硬币,会出现两种可能的结果:正面朝上,反面朝上.这两种结果出现的可能性相同,都是1/2。
4.2认识概率4.3简单的概率计算
一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A发生的概率
P(A)=事件A可能发生的结果数/所有等可能结果的总数
①必然事件发生的概率为1,记作P(必然事件)=1;
②不可能事件的概率为0,记作P(不可能事件)=0;
③如果A为不确定事件,那么P(A)在0和1之间。
第五章平面直角坐标系
5.1确定位置
引例:电影票、角、教室座位、经纬度
在平面上确定物体的位置一般需要两个数据a和b记作(a,b),
a表示:排、行、经度、角度……
b表示:号、列、纬度、距离……
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师想找某个同学,是否还需要用2个数据呢?
(2)多层电影院确定座位位置用两个数据够用吗?
必须有三个数据(a,b,c),其中a表示层数,b表示排号,c表示座号,即“a层b排c号”。
(3)确定小区中住户的位置必须有四个数据,分别为楼号a,单元号b,层数c和住户号d,即“a楼b单元c层d号。”
(4)区域定位法:绘出所在区域代号如B3,D5等。排球比赛队员场上的位置等。
准确定位需几个独立数据?
(1)已知在某列或某行上,只需一个数据定位;
(2)在一个平面内确定物体位置,需两个数据;
(3)在空间中确定物体位置,需要三个独立数据。
5.2平面直角坐标系
1.平面直角坐标系:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。
坐标原点(0,0),第一二三四象限,注意:坐标轴上的点不属于任何象限。
2.坐标:在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。这样的有序实数对叫做点的坐标。
规律1:
⑴点P(x,y)在第一象限←→x>0,y>0;点P(x,y)在第二象限←→x<0,y>0;
点P(x,y)在第三象限←→x<0,y<0;点P(x,y)在第四象限←→x>0,y<0。
⑵x轴上的点的纵坐标为0,表示为(x,0),y轴上的点的横坐标为0,表示为(0,y)
点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到原点的距离是。
例:到x轴的距离为2,到,y轴的距离为3的点有________个,它们是________。
规律2:
⑴关于x轴对称的点的横坐标相同,纵坐标互为相反数;
⑵关于y轴对称的点的纵坐标相同,横坐标互为相反数;
⑶关于原点对称的点的横坐标、纵坐标都互为相反数。
⑷平行于x轴的直线上的点,其纵坐标相同,两点间的距离=;
⑸平行于y轴的直线上的点,其横坐标相同,两点间的距离=;
⑹一、三象限的角平分线上的点横坐标等于纵坐标,可记作:(m,m);
⑺二、四象限的角平分线上的点横坐标与纵坐标互为相反数,可记作:(m,-m)。
点拨:同一点在不同的平面直角坐标系中,其坐标不同;
根据实际需要,可以建适当的平面直角坐标系。
第六章一次函数
6.1函数
常量:在变化过程中,保持不变取值的量叫常量。
变量:在变化过程中,可以不断变化取值的量叫变量。
函数:一般地,设在一个变化的过程中有两个变量x和y。如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们称y是x的函数。其中,x是自变量,y是因变量。
6.2一次函数
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k不为零)的形式,则称y是x的一次函数。x为自变量,y为因变量。特别地,当b=0时,称y是x的正比例函数(正比例函数是特殊的一次函数)。
6.3一次函数的图像
1.一次函数的性质:
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小;
(3)函数图象经过定点(0,b)。
2.正比例函数的性质:
(1)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图象经过第二、四象限,y随x的增大而减小;
(3)函数图象经过定点(0,0)。
3.作正比例函数图像:
对于正比例函数y=kx,通常取两个点(0,0),(1,k),两点的连线就是其图象(两点确定一条直线),所以正比例函数的图象是一条直线。
4.作一次函数图像:
通常取直线与坐标轴的交点来画它的图象。在x轴上的交点(-b/k,0),y轴上的交点(0,b)
5.一次函数y=kx+b的图像的位置与k,b符号的关系:
(1)k﹥0,b﹥0时,图象经过第一、二、三象限;
(2)k﹥0,b﹤0时,图象经过第一、三、四象限;
(3)k0,b﹥0时,图象经过第一、二、四象限;
(4)k0,b﹤0时,图像经过第二、三、四象限;
(5)k﹥0,b=0时,图象经过第一、三象限;
(6)k0,b=0时,图象经过第二、四象限。
6.一元一次方程与一次函数:
议一议:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
从”数”的方面看,当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解;从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解。
第七章二元一次方程组
7.1二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数的项都是一次的方程叫做二元一次方程。
2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫二元一次方程组。
3.二元一次方程的解:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解(二元一次方程有无数个解)。
4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫这个二元一次方程组的解。
7.2解二元一次方程组
1.代入法:先通过一个方程用一个未知数表示另一个未知数,然后代入另一个方程从而得出一个一元一次方程,即可求到其中的一个未知数,然后代回去求另一个未知数。
2.消元法:将两个方程中其中一个未知数的系数化成相等或互为相反数,然后将化成后的式子左右分别相加或相减(系数相等就相减,系数互为相反数就相加)从而消掉了一个未知数即得到了一个一元一次方程,以此求出其中一个未知数的值,再代入求另一个未知数即可。
7.3二元一次方程组的应用
列二元一次方程组解应用题的步骤:
1.审题;2.设未知数;3.列方程组;4.解方程组;5.检验;6.答。
例:一列快车长306米,一列慢车长344米.两车相向而行,从相遇到离开需13秒.若两车同向而行,快车从追及慢车到离开慢车需65秒.求快、慢车的速度分别是多少?
文章来源:http://m.jab88.com/j/60497.html
更多