88教案网

《有理数》复习要点

老师会对课本中的主要教学内容整理到教案课件中,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,我们的工作会变得更加顺利!那么到底适合教案课件的范文有哪些?下面的内容是小编为大家整理的《有理数》复习要点,仅供参考,希望能为您提供参考!

《有理数》复习要点

一、正数和负数
1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;
2、表示相反意义的量:
盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等
3、正、负数所表示的实际意义:
例题:北京冬季里某天的温度为—3°C~3°C,它的确切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最高峰珠穆朗玛海拔8848.13米

二、有理数
2.1有理数的分类
2.2数轴
1、定义:用一条直线上的点表示数,这条直线就叫做数轴。
2、满足的条件:
(1)在直线上取一个点表示数0,这个点叫做原点;
(2)通常规定直线从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
2.3相反数
定义:只有符号不相同的两个数叫做相反数
一般地:a和互为相反数,0的相反数仍然是0。
在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。
2.4绝对值
1、定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣
由定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(1)当a是正数时,∣a∣=;(2)当a是负数时,∣a∣=;(3)当a=0时,∣a∣=。
2.5比较两个数的大小
(1)正数大于0,0大于负数,正数大于负数;
(2)两个负数,绝对值大的反而小。
三、有理数的加减法
1、加法法则:(1)同号两数相加:取相同的符号,并把绝对值相加;
(2)异号两数相加:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
(3)一个数和零相加:任何数和零相加都等于它本身。
2、加法交换律、结合律
(1)有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a
(2)有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)
3、有理数的减法法则:减去一个数,等于加上这个数的相反数:a-b=a+(-b)
四、有理数的乘除法
有理数的乘法法则:
1.两数相乘,同号得正,异号得负,并把它们的绝对值相乘。
2.任何数同0相乘,都得0。
3.几个不等于0的数相乘,积的符号由负因数的个数决定,
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
4.乘法的:交换律、结合律、分配律
有理数的除法法则:
1、除以一个不等于0的数,等于乘上这个数的倒数;
2、两数相除,同号得正,异号得负,并把绝对值相除;
3、0除以任何一个不等于0的数,都是0.

扩展阅读

1.2有理数


老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“1.2有理数”,欢迎阅读,希望您能够喜欢并分享!

1.2有理数
一、教学目标:
(一)知识与技能
1、借助生活中的实例,了解从自然数、分数到有理数的扩展过程,体会有理数应用的广泛性。
2、理解有理数的概念。
3、会用正数、负数、零表示生活中具有相反意义的量。
4、理解有理数的分类。
(二)能力训练要求
通过大量的现实实例,多彩的数学活动机会,让学生体验数学和现实生活的紧密联系,提高学习的兴趣,培养学习的合作交流能力,促进对知识的理解和掌握。
二、重点、难点:
1、重点:有理数的概念。
2、难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃。
三、教学过程:
1、创设情景,引入新知:
将学生从生活中寻找到的几段含有数据的材料在幻灯片中投影出来:
(说明:学生自己做的作业,较能引起学生的兴趣。)
问:材料中含有哪几类数据?
(1)本次大赛共有包括港、奥、台在内的近200支代表队,300个节目赛,其中22支代表队,37个节目进入总决赛。我市爱绿艺校代表队的32名小演员是本次参赛选手中年龄最小的,平均年龄仅5岁,但获得的荣誉却是幼儿组最高的金奖。
答:都是自然数。
(2)据了解,我国公路隧道总数已达1782座,总长度704公里,分别是改革开放之初的4.7倍和倍,是世界上公路隧道最多的国家。我国目前最长的隧道是铁路线上的秦岭隧道,全长18.46公里。正在施工的双向分离式四车道终南山隧道是世界第二、亚洲第一的公路隧道。
答:有自然数,分数。
师:我们在小学的时候已经学过自然数和分数,这些数能够满足我们生活的需要吗?还会不会有新的数?
(3)珠穆朗玛峰是喜玛拉雅山脉的主峰,海拔8848米,是中国第一高峰,也是地球上第一高峰;吐鲁番盆地位于新疆维吾尔自治区中部,天山山地东端。盆地底部海拔-155米。是中国海拔最低处。
2、具有相反意义的量:
师:这里的两个数据分别表示什么意思?“-155”这个带符号的数我们以前没有见过,它在这里表示什么意思?
生:地理上学过测量高度时,规定海平面的高度为0米,8848表示比海平面高出8848米,而-155表示比海平面低155米。
切换到另一个投影材料:
月球表面白天气温可高达123℃,夜晚可低至-233℃,图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
师:这里123℃,-233℃这两个量分别表示什么意思?
生:123℃表示零上123℃,-233℃表示零下233℃。
师:你还在哪些地方见过用带“-”这个号的数?
生:企业的年收入的盈利与亏损中的亏损数经常用带“-”号的数表示,如盈利500用500记,亏损500用-500记。
生:股票中上升5元记做5,下跌3元记做-3。
师:大家观察黑板上我们刚刚举的这些例子,每个例子中出现的一对量,有什么共同特点呢?
生:这里出现的每一对量,都是表示相反意义的量。
3、正数和负数
师:这里零下233℃不用-233℃表示,直接用自然数233℃表示,可以吗?
生:不可以,因为233℃表示零上233℃而不是零下233℃。
师:看来我们学过的数不够用了,自然数、分数还不能够满足我们生活所需。在日常生活和生产实践中,我们经常会这种具有相反意义的量,如表示高度有“海拔上”与“海拔下”,温度有“零上”与”零下”,经营情况有“盈利”与“亏损”等等,为了表示具有相反意义的量,我们把一种意义的量规定为正,用过去学过的数(零除外)表示,这样的数叫做正数。把另一种与之相反的量规定为负,用过去学过的数(零除外)前面放上“-”这个符号来表示,“-”这个符号称为负号,如-155,-233等,这样的数就叫做负数。读作“负155,负233”。与负号具有相反意义的符号是“+”号,为了突出符号正数前面可以放上正号(常省略不写)。特别要指出的是:零既不是正数也不是负数。
【做一做】:P7
2、填空:
(1)规定盈利为正,某公司去年亏损了2.5万元,记做_______万元,今年盈利了3.2万元,记做_________万元;
(2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔________米,吐鲁番盆地最低点低于海平面155米,记做海拔_______米。
【课内练习】:P8
1、填空。
(1)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正,汽车向北行驶75km,记做_______km(或______km)汽车向南行驶100km,记做_____km.
(2)如果向银行存入50元记为50元,那么-30.50元表示_________
(3)规定增加的百分比为正,增加25%记做________,-12%表示__________.
师:在现实生活中有具有相反意义的量实在挺多的,大家总结一下有哪些具有相反意义的量可以用正、负数表示呢?(学生讨论、总结)
一般情况下,正、负规定如下:
符号具有相反意义的量
+零上盈利收入北存入增加……
-零下亏损支出南取出减少……
4、数的分类。
师:通过今天的学习,我们数的家族出现了新的成员——负数。我们来回顾一下我们学过的数有哪些呢,并进行分类。
生讨论结果:

师:还有其他的分类方法吗?
生:

【做一做】:P7
1、(口答)读出下列各数,它们各是正数还是负数?
7,-7.46,0,
师生总结:判断正数与负数的关键师看它前面的正、负号:
有“-”号就是负数,有“+”号或省略了正号的数就是正数。
例:下面给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?
解:是正数;是负数;是整数;是分数,都是有理数。
5、小结
(1)用正数与负数表示相反意义的量。
(2)正数与负数:像1,+2.5等这样的数叫正数。像-6,-1.4,等这样的数叫负数。0既不是正数也不是负数。
(3)正数与负数在形式上的区别:负数一定带有负号。
(4)数的分类

有理数


老师职责的一部分是要弄自己的教案课件,是认真规划好自己教案课件的时候了。对教案课件的工作进行一个详细的计划,接下来的工作才会更顺利!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“有理数”,希望能对您有所帮助,请收藏。

人教版七年级第一章第二节有理数教案
【教学目标】
知识技能
1.进一步加深对负数的认识。
2.掌握有理数的概念,会对有理数按照一定的标准进行分类,初步了解“集合”的含义。
过程方法
体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度
通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】
正确理解有理数的概念。
【教学难点】
正确理解分类的标准和按照定的标准进行分类。
【复习引入】
1.我们知道,所有的分数都可以写成两个整数的比.
有限小数0.37可以写成两个整数的比吗?
无限循环小数也可以写成两个整数的比吗?
所有的有限小数都是分数吗?所有的无限循环小数呢?
结论:所有的有限小数和无限循环小数都是分数.
想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?
你能确定小数3.14159265…是不是分数吗?
2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同?对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.
3.下列负数哪些是负分数?
-12,,-0.33,.
【教学过程】
1.所有正整数组成正整数集合,所有负整数组成负整数集合.
请把下列各数填入它所属于的集合的大括号里:
1,0.0708,-700,-3.88,0,3.14159265,,.
正整数集合:{…}负整数集合:{…}
整数集合:{…}
正分数集合:{…}负分数集合:{…}
分数集合:{…}
(注意:大括号内的省略号表示什么?)
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……
2.归纳概念:整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称为分数。
有理数:整数和分数统称为有理数。
3.有理数的分类:
说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;
③零是整数,零既不是正数,也不是负数.
4.典型例题
例1.把下列各数填入表示它所在的数集的圈内:
-5,-1.2,50,0.618,0,,-1.01001,π,-5%,0.3

负分数集合非负整数集合
有理数集合

正有理数集合整数集合
解:
负分数集合非负整数集合

正有理数集合整数集合

有理数集合
例2.下列命题:(1)0是正数;(2)0是整数;(3)0最小的有理数;(4)0是非负数;(5)0是偶数。正确的命题个数是…………………………()
A.2个B.3个C.4个D.5个
解析:选B。(2)(4)(5)正确。
例3.在5分钟内背过5个单词为过关,超过的记为正。现在小明的记录为-3,小华的记录为0,小军的记录为2,小丽的记录为+1,则:
(1)四个人中有几个人过关?(2)他们分别背过了几个单词?
(3)记录中的四个数字统属哪一类有理数?
解:(1)小华、小军、小丽3个过关。
(2)小华背5个,小军背7个,小丽背6个。
(3)属于有理数中的整数集合。

【课堂作业】
1.把下列各数填入它所属于的集合的圈内:
正整数集合负整数集合

正分数集合负分数集合
思考:上面的练习中四个集合合并在一起就是全体有理数的集合吗?

2.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?
+7,-5,,,79,0,0.67,,+5.1
3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
4.如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:
1)属于正数集合,但不属于整数集合的数;
2)属于整数集合,但不属于正数集合的数;
3)既属于正数集合,又属于整数集合的数.
将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?
5.在数-100,70.8,-7,π,-3.8,0,,,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

参考答案:
1.

正整数集合负整数集合

正分数集合负分数集合
答:不是。因为他们漏掉了0。
2.整数有7,-5,79,0。
分数有。
正数有7,79,0.67,+5.1,。
负数有。
3.0是整数;自然数一定是整数;0不是正整数;
整数不一定是自然数,因为负整数就不是自然数。
4.略
5.不是分数的是-100,-7,π,0,;不是小数的是-100,-7,0;
不是有理数的是π,。
【教学反思】
1.本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2.本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

有理数复习教学设计


老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“有理数复习教学设计”,仅供您在工作和学习中参考。

有理数复习教学设计
课题名称第一章有理数复习教学
科目数学年级7年级上
教学时间20xx.10
教学设计要点通过本课学习帮助学生梳理有理数的相关概念,熟练地掌握有理数的相关知识,并借助数轴解决实际问题。并使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
教学目标(1)复习整理有理数有关概念,正确理解有理数的五个重要概念:有理数、数轴、相反数、绝对值、倒数;
(2)会进行有理数的分类,结合数轴理解有理数的相关概念,学会用数轴比较数的大小、解决一些数学问题;
(3)会用科学记数法表示绝对值较大的数;
(4)正确理解近似数及有效数字的概念,会按题目要求取近似数.
(5)系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
教学重点、难点重点:有理数的相关概念及熟练进行有理数加减、乘除、乘方的混合运算
难点:灵活应用有理数相关知识;准确进行有理数加减、乘除、乘方的混合运算
教学资源徐闻县初中数学
教学活动教学过程设计意图
环节一:
建立知识结构图
目的让学生通过知识结构图,梳理知识,加深对本章书认识;
教学环节教学内容设计意图
环节二:回顾与思考

二、有理数的概念
将下列各数填入表示相应集合的大括号中
-7.2,,-9,3.2,0,,-(-5),
整数集合:{}
分数集合:{}
正数集合:{}
负数集合:{}
正整数集合:{}
2、数轴规定了、和的直线叫数轴。
画出数轴,并在数轴上表示下列各数:
-2,+1,0,-3.5,+4
3、相反数(1)数a的相反数是,(2)0的相反数是。
(3)若a和b互为相反数,则a+b=,=(b≠0)。
(4)的相反数为3.9。
4、倒数:数3的倒数是__,的倒数是__
5、绝对值:
(1)一个正数的绝对值是。(2)0的绝对值是。
(3)=。=。=
(4)的绝对值是16。绝对值等于7.2的是。
(5)数轴上距离原点5个单位长度的数是。通过实例,
帮助学生全面复习有理数的有关概念;教学中可考虑让学生先独立完成知识点回忆及相关的基础练习,然后教师点评;

这里单独列出几种特殊的数进行复习,让学生更好地理解有理数

教学环节教学内容设计意图
6、有理数大小的比较:
比较下列每对数的大小:(用>,<,=填空)
(1),(2)(3),
7、近似数与有效数字:从边起第一个不是零的数字起到位的数字为止,所有的数字叫这个数的有效数字。
(1)0.03085精确到千分位的近似数是,保留三个有效数字是。
(2)近似数3.20×105是精确到位,它有个
有效数字。
8、科学记数法:用科学记数法表示比较大的数,即写成为a×的形式,其中,n是正整数。
开发大西北的重大工之一青藏公路,全长为1088000米,把1088000米,用科学记数法表示为米。由于所设计的练习以单一知识点为,学生基本上能独立完成,教师可以利用学生练习的时间,对学习有困难的学习进行辅导,真正达到分层教学的目的。;
环节三:
回忆、计算

三、有理数的计算:(学生完成题组一至题三的练习)
题组一:(1)(2)-4+4=
(3)(4)
(题组二:(1)(2)
(3)(4)
题组三:(1)(2)
(3)(4)
题组四:计算
(1),(2)
目的通过练习回忆有理数的加减、乘除、乘方的运算法则及运算顺序;

教师在学生练习中指导学习困难的学生。

教学环节教学内容设计意图
环节四:实例综合应用
四、例1、小红家、学校和小华家自东向西依次坐落在一条东西走向的大街上,小红家距学校1千米,小华家距学校2千米,小明沿街从学校向西走1千米,又向东走2千米,此时小明的位置在哪里?
例2、根据数轴化简│b+c│+│a-c│+│b-a│.
运用实例解决实际问题,让学生掌握具体用法
环节五:
学生练习
四、基础训练(A组)
1.如果收入15元记作+15元,那么支出20元记作。
2.把下列各数填在相应的大括号:2,–0.3,0,+5,
正数集合{},负分数集合{}
3.的相反数是,的绝对值是,的倒数是.
4.在数轴上表示:用点A表示1.5,用点B表示–3

5.(1)改革开放二十多年来,赤峰市的经济得到了高效和谐的发展,2006年我市地区生产总值已达到428亿元,428亿元用科学记数法表示为()元
A.B.C.D.
(2)蜂房的巢壁厚约为0.000073米,用科学记数法表示
为米。
6.近似数0.350精确到位,它有个有效数字。
7.3.810千万精确到位,有个有效数字。
8.9.495精确到百分位是。
9.最小的正整数是,最大的负整数是,
绝对值最小的数是。
10.计算:(1)(2)
(3)(4)
(5)
(6)
五、能力训练(B组)
xx.若,则x=。若,则
12.绝对值不大于2的整数有个,把它们由小到大排列为。
13.相反数等于本身的数是,绝对值等于本身的数是,倒数等于本身的数是。平方等于本身的数。
14龙岩市有着丰富而独特的旅游资源.据报道,去年我市接待游客4340800人次,用科学记数法表示约为
人次.(保留两个有效数字)
15.,则a一定是()
A.正数B.负数C.非正数D.非负数
16.若,则a=____,b=____
17.用四舍五入法得到a的近似数为4.60,则这个数a的范围是()
A.B.
C.D.
18.实数在数轴上的对应点如图,化简
a+|a+b|-|b–a|
a0b
六、拓展训练(C组)
19.若a、b互为相反数,c、d互为倒数,且c=–l,求的值
20.比较大小:a与2a.设计分层练习,让各层
次的学生能在课堂上得到训练,目的是让学生掌握运算法则及混合运算的顺序,并能正确求解;
20xx学年上学期徐闻县数学复习资料
第一章有理数复习卷
七()班姓名:学号:年月日
一、本课主要知识点
1.有理数的分类、有理数的相关概念(数轴,相反数,绝对值,倒数)及有理数的大小比较。
2.近似数,有效数字和科学记数法。
3、掌握有理数数的加、减、乘、除、乘方五种运算及简单的混合运算。
二、知识点练习
1.有理数数的分类:
将下列各数填入表示相应集合的大括号中
-7.2,,-9,3.2,0,,-(-5),
整数集合:{}正数集合:{}
负数集合:{}正整数集合:{}
2、数轴画出数轴,并在数轴上表示下列各数:
-2,+1,0,-3.5,+4
3、相反数
(1)数a的相反数是,(2)0的相反数是。
(3)若a和b互为相反数,则a+b=,=(b≠0)。
(4)的相反数为3.9。
4、倒数:数3的倒数是__,的倒数是__
5、绝对值:
(1)一个正数的绝对值是。(2)0的绝对值是。
(3)=。=。=
(4)的绝对值是16。绝对值等于7.2的是。
(5)数轴上距离原点5个单位长度的数是。
6、有理数大小的比较:(用>,<,=填空)
(1),(2)(3),
7、近似数与有效数字:
(1)0.03085精确到千分位的近似数是,保留三个有效数字是。(2)近似数3.20×105是精确到位,它有个有效数字。
8、科学记数法:开发大西北的重大工之一青藏公路,全长为1088000米,把1088000米,用科学记数法表示为米。
9、有理数的计算:(学生完成题组一至题三的练习)
题组一:(1)(2)-4+4=(3)(4)
题组二:(1)(2)
(3)(4)
题组三:(1)(2)(3)(4)
题组四:计算
(1),(2)

三、例题
例1、小红家、学校和小华家自东向西依次坐落在一条东西走向的大街上,小红家距学校1千米,小华家距学校2千米,小明沿街从学校向西走1千米,又向东走2千米,此时小明的位置在哪里?

例2、根据数轴化简│b+c│+│a-c│+│b-a│.

四、基础训练(A组)
1.如果收入15元记作+15元,那么支出20元记作。
2.把下列各数填在相应的大括号:2,–0.3,0,+5,
正数集合{},负分数集合{}
3.的相反数是,的绝对值是,的倒数是.
4.在数轴上表示:用点A表示1.5,用点B表示–3

5.(1)改革开放二十多年来,赤峰市的经济得到了高效和谐的发展,2006年我市地区生产总值已达到428亿元,428亿元用科学记数法表示为()
A.元B.元C.元D.元
(2)蜂房的巢壁厚约为0.000073米,用科学记数法表示为米。
6.近似数0.350精确到位,它有个有效数字。
7.3.810千万精确到位,有个有效数字。
8.最小的正整数是,最大的负整数是,绝对值最小的数是。
9.计算:(1)(2)

(3)(4)

五、能力训练(B组)
xx.若,则x=。若,则
12.绝对值不大于2的整数有个,把它们由小到大排列为。
13.相反数等于本身的数是,绝对值等于本身的数是,倒数等于本身的数是。平方等于本身的数。
14龙岩市有着丰富而独特的旅游资源.据报道,去年我市接待游客4340800人次,用科学记数法表示约为人次.(保留两个有效数字)
15.,则a一定是()
A.正数B.负数C.非正数D.非负数
16.若,则a=____,b=____
17.用四舍五入法得到a的近似数为4.60,则这个数a的范围是()
A.B.
C.D.
18.实数在数轴上的对应点如图,化简a+|a+b|-|b–a|

a0b

六、拓展训练(C组)
19.若a、b互为相反数,c、d互为倒数,且c=–l,求的值

20.比较大小:a与2a.

20xx学年上学期徐闻县数学复习资料
《有理数》复习题
七()姓名:学号:成绩
一、细心选一选
1、-3不是……………………………………………………………………().
(A)有理数(B)整数(C)自然数(D)负有理数
2、一个数的平方等于它本身,这个数是…………………………………()
A、1B、0C、0或1D、1或–1
3、下列算式中,积为负数的是……………………………………………()
A、B、
C、D、
4、精确到……………………………………………………()
(A)千位(B)千分位(C)百分位(D)个位
5、A点海拔m,B点比A点高m,那么B点海拔……………………()
(A)m;;(B)m;(C)m;(D)m..
6、下列语句:①一个数的绝对值一定是正数;②—a一定是一个负数;③没有绝对值为—3的数;④若=a,则a是一个正数;⑤离原点左边越远的数就越小。其中正确的有…………………………………………………()个
A、0B.3C、2D、4
7、a,b两数在数轴上的位置如图,则下列不正确的是…………………();
A、a+b<0B、ab<0C、<0D、a-b<0
二、耐心填一填
1、化简=;=;-
2、的倒数是,3的相反数是,-2的绝对值是,
3、用科学记数法表示89900000(结果保留2个有效数字)为.
4、2003.20是一个近似数,它精确到______位,有______个有效数
5、数轴上点A表示-3,那么到A点距离是5个单位的点表示的数是______.
6、绝对值不大于3的负整数有
7、若a,b互为倒数,m,n互为相反数,则=
8、若测量得到某同学的身高是1.66米,意味着他的身高的精确值是在米和米之间;

三、用心答一答
1、画出数轴,把下列各数在数轴上表示出来,并按从小到大的顺序,用“”连接起来.
0,

2、把下列各数填入相应的大括号里:
-,+1,4.7,-17,0,5,,5,-6,-0.6

(1)正有理数集合;(2)负分数集合;

(3)整数集合;(4)非负整数集合;

3、计算下列各题
(1)(2)-1-5-1+3-4.5+2

(3)(4)

(5)1(6)+

4、出租车司机小王某天下午营运都是在东西走向的大道上进行的,如果规定向东为正,向西为负,那么这天下午行车里程(单位:千米)如下:
-2,+5,-1,+10,-15,-3
(1)将最后一位乘客送到目的地时,小王距下午出车时的出发点多远?此地在下午出车时的出发点的东边还是西边?
(2)若汽车的耗油量为m升/千米,这天下午小王开车共耗油多少升?

文章来源:http://m.jab88.com/j/8754.html

更多
上一篇:当飞机遇险的时候 下一篇:但愿人长久

最新更新

更多