作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“七年级数学下册《因式分解》知识点归纳湘教版”,大家不妨来参考。希望您能喜欢!
七年级数学下册《因式分解》知识点归纳湘教版
第三章因式分解
1.因式分解
定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。即:多项式几个整式的积例:axbx
13131
x(ab)3
因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。2.因式分解的方法:
(1)提公因式法:
①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式
或多项式。
系数——取各项系数的最大公约数
字母——取各项都含有的字母
指数——取相同字母的最低次幂
例:12a3b3c8a3b2c36a4b2c2的公因式是
解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部
3232
分a3b3c,a3b2c3,a4b2c2都含有因式abc,故多项式的公因式是2abc.
②提公因式的步骤第一步:找出公因式;
第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩
下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项式中第一项有负号的,要
先提取符号。
2233
例1:把12ab18ab24ab分解因式.
解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab,故公因式为6ab。
2233
解:12ab18ab24ab
6ab(2a3b4a2b2)
例2:把多项式3(x4)x(4x)分解因式
解析:由于4x(x4),多项式3(x4)x(4x)可以变形为3(x4)x(x4),我们可以发现多项
式各项都含有公因式(x4),所以我们可以提取公因式(x4)后,再将多项式写成积的形式.解:3(x4)x(4x)=3(x4)x(x4)=(3x)(x4)
例3:把多项式x22x分解因式
解:x22x=(x22x)x(x2)(2)运用公式法
定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
a.逆用平方差公式:a2b2(ab)(ab)
b.逆用完全平方公式:a22abb2(ab)2
3
3
2
2
c.逆用立方和公式:ab(ab)(aabb(拓展))
d.逆用立方差公式:a3b3(ab)(a2abb2(拓展))
注意:①公式中的字母可代表一个数、一个单项式或一个多项式。
②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项
式,可考虑完全平方公式。
例1:因式分解a214a49
2
解:a14a49=(a7)2
例2:因式分解a2a(bc)(bc)解:a2a(bc)(bc)=(abc)(3)分组分解法(拓展)
①将多项式分组后能提公因式进行因式分解;例:把多项式abab1分解因式
解:abab1=(aba)(b1)=a(b1)(b1)(a1)(b1)②将多项式分组后能运用公式进行因式分解.
22
例:将多项式a2ab1b因式分解
22
222
22
解:a2ab1b
=(a2abb)1(ab)1(ab1)(ab1)
2x(4)十字相乘法(形如(pq)xpq(xp)(xq)形式的多项式,可以考虑运用此种方法)
222
方法:常数项拆成两个因数p和q,这两数的和pq为一次项系数
x2(pq)xpq
x2(pq)xpq(xp)(xq)
例:分解因式x2x30分解因式x252x100补充点详解补充点详解
我们可以将-30分解成p×q的形式,我们可以将100分解成p×q的形式,使p+q=-1,p×q=-30,我们就有p=-6,使p+q=52,p×q=100,我们就有p=2,q=5或q=-6,p=5。q=50或q=2,p=50。
所以将多项式x2(pq)xpq可以分所以将多项式x2(pq)xpq可以分解为(xp)(xq)解为(xp)(xq)
x
x5
x2
-6
x50
x2x30(x6)(x5)
3.因式分解的一般步骤:
x252x100(x50)(x2)
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明
确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。一、例题解析
提公因式法
提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:
系数——取多项式各项系数的最大公约数;
字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.【例1】分解因式:
⑴15aab
2n1
10abba(n为正整数)
2n
⑵4a2n1bm6an2bm1(m、n为大于1的自然数)
【巩固】分解因式:(xy)2n1(xz)(xy)2n2(yx)2n(yz),n为正整数.
【例2】先化简再求值,yxyxyxyx2,其中x2,y
2
求代数式的值:(3x2)2(2x1)(3x2)(2x1)2x(2x1)(23x),其中x.
3
1.2
22221
【例3】已知:bca2,求a(abc)b(cab)c(2b2c2a)的值.
33333
公式法
平方差公式:a2b2(ab)(ab)
①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;
③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:a22abb2(ab)2a22abb2(ab)2①左边相当于一个二次三项式;
②左边首末两项符号相同且均能写成某个数或式的完全平方式;
分解因式:x3(xyz)(yza)x2z(zxy)x2y(zxy)(xza).
③左边中间一项是这两个数或式的积的2倍,符号可正可负;
④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:
a3b3(ab)(a2abb2)a3b3(ab)(a2abb2)(ab)3a33a2b3ab2b3(ab)3a33a2b3ab2b3
第3课时《因式分解》复习学案
班级:_________姓名:__________评价:__________
【考点扫描】
1.分解因式:.
2.下列式子中是完全平方式的是()
A.B.C.D.
3.若.
4.分解因式:=。
5.分解因式:m2-n2+2m-2n=.
6.分解因式:.
【例题精讲】
1、分解因式:
2、分解因式:=.
3、因式分解:___________________.
4、已知:a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2(2)a2+b2
5、在边长为的正方形中挖去一个边长为的小正方形(>)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.
B.
C.
D.
【当堂检测】
一.选择题:
1.下列各式从左到右的变形中,是因式分解的为()
A.B.
C.D.
2.下列多项式中,能用提公因式法分解因式的是()
A.x2–yB.x2+2xC.x2+y2D.x2–xy+y2
二.填空题:
(将下列各式因式分解)
1.=
2..
3.=______________.
4..
5.=___________________.
6.若是一个完全平方式,则
三.解答题:
1.已知,,求的值。
2.如图所示,边长为的矩形,它的周长为14,面积为10,求的值.
【能力提升】
1.已知a、b、c是△ABC的三边,且满足,试判断△ABC的形状.
阅读下面解题过程:
解:由得:
①
②
即③
∴△ABC为直角三角形。④
试问:以上解题过程是否正确:;
若不正确,请指出错在哪一步?(填代号);
错误原因是;
本题的结论应为.
老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“七年级下册《方差》小结与复习学案湘教版”,仅供参考,希望能为您提供参考!
七年级下册《方差》小结与复习学案湘教版
方差
目的要求:
1.认识极差、方差的概念.
2.能正确计算一组数据的极差、方差.
3.极差、方差对一组数据的意义.
重点:
极差、方差对一组数据的意义
准备:
小黑板、幻灯
教学过程:
一、复习.(幻灯)
1.权数与频率的关系.
2.求25、37、54、46、75的加权平均数.
⑴、已知权数为0.1、0.2、0.15、0.25、0.3
⑵、已知前四个数的权数为0.2、0.2、0.4、0.1
二、极差.
1.引入.(小黑板)
我班A同学的期中测试成绩如下:政:80语:85、数:95、外:60、史:90、地:65、生:95
我班B同学的期中测试成绩如下:政:85语:75、数:95、外:75、史:85、地:80、生:75
⑴、计算两同学的平均成绩,看看谁的成绩更好?
⑵、你认为哪个同学的成绩看起来一平衡?为什么?
B同学的成绩平衡些.虽然他们的最高分都相同,但B同学他的最低分只有75,而A同学的最低分是60分.)
2.教师引导得到:
一组数据中最大值与最小值之差,叫这组数据的极差.极差的大小反映了数据的波动或分散的程度.
如上,A同学的成绩的极差是95-60=35,B同学的成绩的极差是95-75=20,因而B同学的成绩的波动就小一些,成绩就比较平衡.极差越大,波动越大;极差越小,波动越小.
3.应用.
下表是1998年4—9月中每个月份湘江的最高水位和最低水位(单位:m)
⑴、计算每个月份水位变化的极差.
⑵、计算4—9月份最高水位变化的极差.
⑶、计算4—9月份最低水位变化的极差.
⑷、从上面的数据及其分析中,你能获得哪些信息?
(水位变化的极差反映了湘江水位涨落的程度;
6月份的极差最大,说明这一年6月份经常下大雨,雨水是最多的.水位波动最大
9月份极差最小,说明很少下雨,水位恒定.
从这6个月的水位变化情况看,最高水位极差达到10.41m,最低水位极差也在5.35m.说明这一年湘江发洪水,灾害严重.……)
可让学生自由发言,能够在数据中体现的信息都应给予肯定.
4.练习.
三、方差.
1.引入.(小黑板)
有两个合唱队,各由5名队员组成,他们的身高为(单位:cm)
甲队:160、162、159、160、159
乙队:180、160、150、150、160
⑴、计算两队的平均身高.看看这两队中从身高来说哪队更整齐?
⑵、哪组队员的身高更集中于160cm?
2.反映一组数据的分散程度,数学中可用方差来解决.
方差:一组数据中的各数与其平均数的偏差的平方的平均值,称为这组数据的方差.
如上题中用方差来解决看哪队更整齐的问题.
甲乙两队中,每队队员的平均身高都是160cm,则甲队队员的身高的方差是:
〔(160-160)2+(162-160)2+(159-160)2+(160-160)2+(159-160)2〕÷5=1.2
乙队队员的身高的方差是:
〔(180-160)2+(160-160)2+(150-160)2+(150-160)2+(160-160)2〕÷5=120显然,乙队队员身高的方差远远大于甲队队员的身高,这说明甲队队员的身高偏差较小,看起来更整齐;而乙队队员的身高偏差较大,则乙队队员高的高、矮的矮,不齐整.
3.方差的意义.
方差反映的是一组数据与其平均数的偏离程度,方差越小,数据越集中;方差越大,数据越分散.简而言之:方差反映了数据组与其平均数的偏离程度.
4.应用.(幻灯)
⑴我班某同学期中测试成绩如下:政:85语:75、数:95、外:75、史:85、地:60、生:95,计算这组数据的极差、方差.
⑵有一批棉花,其各种长度的纤维所占比例如表所示:
试求这批棉花纤维的平均长度与方差,并对这批的质量发表自己的看法.
四、作业.
五、小结.
(说明:由于学生使用的不同的计算器,所以请同学们自己参考阅读说明书,练习用计算器求方差.)
纤维长度3cm5cm6cm所占比例25%40%35%
文章来源:http://m.jab88.com/j/7189.html
更多