88教案网

高考物理牛顿第二定律7

一名优秀的教师在每次教学前有自己的事先计划,教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的消化课堂内容,帮助教师营造一个良好的教学氛围。优秀有创意的教案要怎样写呢?下面是由小编为大家整理的“高考物理牛顿第二定律7”,仅供参考,欢迎大家阅读。

牛顿第二定律(实验定律)
◎知识梳理
1.定律内容
物体的加速度a跟物体所受的合外力成正比,跟物体的质量m成反比。
2.公式:
理解要点:
①因果性:是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;
②方向性:a与都是矢量,,方向严格相同;
③瞬时性和对应性:a为某时刻物体的加速度,是该时刻作用在该物体上的合外力。
○4牛顿第二定律适用于宏观,低速运动的情况。
◎例题评析

【例2】如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?

【分析与解答】因为速度变大或变小取决于加速度和速度方向的关系,当a与v同向时,v增大;当a与v反向时,v减小;而a由合外力决定,所以此题要分析v,a的大小变化,必须先分析小球的受力情况。
小球接触弹簧时受两个力的作用:向下的重力和向上的弹力。在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg-kx,而x增大),因而加速度减小(因为a=F/m),由于v方向与a同向,因此速度继续变大。
当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。
之后,小球由于惯性继续向下运动,但弹力大于重力,合力向上,逐渐变大(因为F=kx-mg=ma),因而加速度向上且变大,因此速度逐渐减小至零。小球不会静止在最低点,以后将被弹簧上推向上运动。
综上分析得:小球向下压弹簧过程,F方向先向下后向上,先变小后交大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小。
【注意】在分析物体某一运动过程时,要养成一个科学分析习惯,即:这一过程可否划分为两个或两个以上的不同的小过程,中间是否存在转折点,如上题中弹力等于重力这一位置是一个转折点,以这个转折点分为两个阶段分析。
【例3】如图所示,一质量为m的物体系于长度分别为L1L2的两根细线上.,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态,现将L2线剪断,求剪断瞬时物体的加速度。
【分析与解答】
剪断线的瞬间,,T2突然消失,物体即将作圆周运动,所以其加速度方向必和L1垂直,L1中的弹力发生突变,弹力和重力的合力与L1垂直;可求出瞬间加速度为a=gsinθ。
(2)若将图中的细线L1,改变为长度相同、质量不计的轻弹簧,如图所示,其他条件不变,求解的步骤和结果与例3相同吗?
【说明】(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生,同时变化,同时消失,分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点。
A.轻绳不需要形变恢复时间、在瞬时问题中,其弹力可以突变,成为零或者别的值。
B.轻弹簧(或橡皮绳)需要较长的形变恢复时间,在瞬时问题中,其弹力不能突变,大小方向均不变。

【例4】将金属块用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板安有压力传感器,箱可以沿竖直轨道运动,当箱以a=2.0m/s2的加速度作竖直向上的匀减速运动时,上顶板的传感器显示的压力为6.ON,下顶板的传感器显示的压力为10.ON,g取10m/s2
(1)若上顶板的传感器的示数是下顶板的传感器示数的一半,试判断箱的运动情况。
(2)要使上顶板传感器的示数为O,箱沿竖直方向的运动可能是怎样的?
【分析与解答】以金属块为研究对象,设金属块的质量为m,根据牛顿第二定律,有F2+mg-F1=ma
解得m=O.5kg
(1)由于上顶板仍有压力,说明弹簧的长度没有变化,因此弹簧弹力仍为lO.ON,可见上顶板的压力是5N,设此时的加速度为a1,根据牛顿第二定律,有
F1-F1/2-mg=mal,
即得a1=O,即此时箱静止或作匀速直线运动。
(2)要想上顶板没有压力,弹簧的长度只能等于或小于目前的长度,即下顶板的压力只能等于或大干10.ON,这时金属块的加速度为a2,应满足
ma2≥10.O-mg.
得a2≥10m/s2,即只要箱的加速度为向上,等于或大于10m/s2(可以向上作加速运动,也可以向下作减速运动),上顶板的压力传感器示数为零。
【说明】利用传感器可以做很多的物理实验,当然传感器的种类多种多样,以后我们还会遇到。
【例5】如图所示,质量为m的入站在自动扶梯上,扶梯正以加速度a向上做减速运动,a与水平方向的夹角为θ.求人受的支持力和摩擦力。
【分析与解答】题中人对扶梯无相对运动,则人、梯系统的加速度(对地)为a,方向与水平方向的夹角为θ斜向下,梯的台面是水平的,所以梯对人的支持力N竖直向上,人受的重力mg竖直向下。由于仅靠N和mg不可能产生斜向下的加速度,于是可判定梯对人有水平方向的静摩擦力,。
解法1以人为研究对象,受力分析如图所示。因摩擦力f为待求.且必沿水平方向,设水平向右。为不分解加速度a,建立图示坐标,并规定正方向。
X方向mgsinθ-Nsinθ-fcosθ=ma
Y方向mgcosθ+fsinθ-Ncosθ=0
解得:N=m(g-asinθ)f=-macosθ
为负值,说明摩擦力的实际方向与假设相反,为水平向左。
解法二:
将加速度a沿水平方向与竖直方向分解,如图ax=acosθay=asinθ
水平方向:f=max=macosθ
竖直方向:mg-N=may=masinθ
联立可解得结果。

【例6】如图1所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能是()
A.加速下降B.减速上升
C.匀速向右运动D.加速向左运动
1.ABD
【分析与解答】:木箱未运动前,A物体处于受力平衡状态,受力情况:重力mg、箱底的支持力N、弹簧拉力F和最大的静摩擦力(向左),由平衡条件知:
物体A被弹簧向右拉动(已知),可能有两种原因,一种是弹簧拉力(新情况下的最大静摩擦力),可见,即最大静摩擦力减小了,由知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,由于物体原来静止,所以木箱运动的情况可能是加速下降,也可能是减速上升,A对B也对。
另一种原因是木箱向左加速运动,最大静摩擦力不足使A物体产生同木箱等大的加速度,即的情形,D正确。
匀速向右运动的情形中A的受力情况与原来静止时A的受力情况相同,且不会出现直接由静止改做匀速运动的情形,C错。
[总结].应用牛顿第二定律解题的步骤
(1)选取研究对象:根据题意,研究对象可以是单一物体,也可以是几个物体组成的物体系统。
(2)分析物体的受力情况
(3)建立坐标
①若物体所受外力在一条直线上,可建立直线坐标。
②若物体所受外力不在一直线上,应建立直角坐标,通常以加速度的方向为一坐标轴,然后向两轴方向正交分解外力。
(4)列出第二定律方程
(5)解方程,得出结果JaB88.COm

◎能力训练2
1.一个质量为2kg的物体,在5个共点力作用下保持平衡,现同时撤消大小分别是15N和10N的两个力,其余的力保持不变,此时物体加速度大小可能是:
A.2m/s2B.3m/s2C.12m/s2D.15m/s2
2.如图所示,小车上有一弯折硬杆,杆下端固定一质量为m的小球。当小车向左加速运动时,下列关于杆对球的作用力方向的说法中正确的是
A.可能竖直向上
B.可能水平向左
C.可能沿杆向上
D.一定沿杆向上
3.如图所示,有一箱装得很满的土豆,以一定的初速在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是
4.一个物块与竖直墙壁接触,受到水平推力F的作用。力F随时间变化的规律为(常量k0)。设物块从时刻起由静止开始沿墙壁竖直向下滑动,物块与墙壁间的动摩擦因数为,得到物块与竖直墙壁间的摩擦力f随时间t变化的图象,如图所示,从图线可以得出
A.在时间内,物块在竖直方向做匀速直线运动
B.在时间内,物块在竖直方向做加速度逐渐减小的加速运动
C.物块的重力等于a
D.物块受到的最大静摩擦力总等于b
5.如图4所示,几个倾角不同的光滑斜面具有共同的底边AB,当物体由静止沿不同的倾角从顶端滑到底端,下面哪些说法是正确的?
A.倾角为30°时所需时间最短
B.倾角为45°所需时间最短
C.倾角为60°所需时间最短
D.所需时间均相等
6.质量的物体在拉力F作用下沿倾角为30°的斜面斜向上匀加速运动,加速度的大小为,力F的方向沿斜面向上,大小为10N。运动过程中,若突然撤去拉力F,在撤去拉力F的瞬间物体的加速度的大小是____________;方向是____________。

7.如图所示,传送带AB段是水平的,长20m,传送带上各点相对地面的速度大小是2m/s,某物块与传送带间的动摩擦因数为0.1。现将该物块轻轻地放在传送带上的A点后,经过多长时间到达B点?(g取)

相关知识

牛顿第二定律


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生更容易听懂所讲的内容,帮助高中教师能够井然有序的进行教学。高中教案的内容要写些什么更好呢?以下是小编为大家精心整理的“牛顿第二定律”,仅供您在工作和学习中参考。

教学目标
知识目标
(1)通过演示实验认识加速度与质量和和合外力的定量关系;
(2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式;
(3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律;
(4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系;
(5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题.

能力目标
通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.

情感目标
培养认真的科学态度,严谨、有序的思维习惯.

教学建议

教材分析

1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系.
2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式.
3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性.

教法建议
1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小.
2、通过典型例题让学生理解牛顿第二定律的确切含义.
3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式

教学设计示例

教学重点:牛顿第二定律

教学难点:对牛顿第二定律的理解

示例:

一、加速度、力和质量的关系

介绍研究方法(控制变量法):先研究在质量不变的前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系.介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力.介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比.

以上内容可根据学生情况,让学生充分参与讨论.本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验.

1、加速度和力的关系

做演示实验并得出结论:小车质量相同时,小车产生的加速度与作用在小车上的力成正比,即,且方向与方向相同.

2、加速度和质量的关系

做演示实验并得出结论:在相同的力F的作用下,小车产生的加速度与小车的质量成正比,即.

二、牛顿第二运动定律(加速度定律)

1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.即,或.

2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N.则公式中的=1.(这一点学生不易理解)

3、牛顿第二定律:

物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.

数学表达式为:.或

4、对牛顿第二定律的理解:

(1)公式中的是指物体所受的合外力.

举例:物体在水平拉力作用下在水平面上加速运动,使物体产生加速度的合外力是物体

所受4个力的合力,即拉力和摩擦力的合力.(在桌面上推粉笔盒)

(2)矢量性:公式中的和均为矢量,且二者方向始终相同.由此在处理问题时,由合外力的方向可以确定加速度方向;反之,由加速度方向可以找到合外力的方向.

(3)瞬时性:物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化.

举例:静止物体启动时,速度为零,但合外力不为零,所以物体具有加速度.

汽车在平直马路上行驶,其加速度由牵引力和摩擦力的合力提供;当刹车时,牵引力突然消失,则汽车此时的加速度仅由摩擦力提供.可以看出前后两种情况合外力方向相反,对应车的加速度方向也相反.

(4)力和运动关系小结:

物体所受的合外力决定物体产生的加速度:

当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相同——→物体做匀加速直线运动

当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相反——→物体做匀减速直线运动

以上小结教师要带着学生进行,同时可以让学生考虑是否还有其它情况,应满足什么条件.

探究活动

题目:验证牛顿第二定律
组织:2-3人小组
方式:开放实验室,学生实验.
评价:锻炼学生的实验设计和操作能力.


《牛顿第二定律》教案


《牛顿第二定律》教案

【教学目标】:1.理解牛顿第二定律的内容、表达式和适用范围.2.学会分析两类动力学问题.
【教学重点】:理解牛顿第二定律的内容、表达式和适用范围
【教学难点】:.学会分析两类动力学问题.
【教学方法】:讲练结合
一、牛顿第二定律
[基础导引]
由牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它.这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?
[知识梳理]
1.内容:物体加速度的大小跟它受到的作用力成________、跟它的质量成________,加速度的方向跟____________相同.
2.表达式:________.
3.适用范围
(1)牛顿第二定律只适用于________参考系(相对地面静止或____________运动的参考系).
(2)牛顿第二定律只适用于________物体(相对于分子、原子)、低速运动(远小于光速)的情况.
二、两类动力学问题
[基础导引]
以15m/s的速度行驶的无轨电车,在关闭电动机后,经过10s停了下来.电车的质量是4.0×103kg,求电车所受的阻力.
[知识梳理]
1.动力学的两类基本问题
(1)由受力情况判断物体的____________
(2)由运动情况判断物体的____________.
2.解决两类基本问题的方法:以__________为桥梁,由运动学公式和____________________列方程求解.
:解决两类动力学问题的关键是什么?
三、力学单位制
[基础导引]
如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做的功W=Fl.我们还学过,功的单位是焦耳(J).请由此导出焦耳与基本单位米(m)、千克(kg)、秒(s)之间的关系.
[知识梳理]
1.单位制由基本单位和导出单位共同组成.
2.力学单位制中的基本单位有________、________、时间(s).
3.导出单位有________、________、________等.
探究一牛顿第二定律的理解
例1牛顿第二定律导学案如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?
牛顿第二定律导学案总结
利用牛顿第二定律分析物体运动过程时应注意以下两点:
(1)a是联系力和运动的桥梁,根据受力条件,确定加速度,以加速度
确定物体速度和位移的变化.(2)

高一物理牛顿第二定律


俗话说,居安思危,思则有备,有备无患。作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?为满足您的需求,小编特地编辑了“高一物理牛顿第二定律”,供大家借鉴和使用,希望大家分享!

牛顿第二定律
(课时为2学时)
一、教学内容分析
1.内容与地位
在共同必修模块物理1的内容标准中涉及本节的内容有:“通过实验,探究加速度与物体质量、物体受力的关系.理解牛顿运动定律”.本条目要求学生通过实验,探究加速度、质量、力三者的关系,强调让学生经历实验探究过程.
牛顿第二定律是动力学的核心规律,是学习其他动力学规律的基础,是本章的重点内容,它阐明了物体的加速度跟力和质量间的定量关系,是在实验基础上建立起来的重要规律,在理论与实际问题中都有广泛的运用.在教学过程中要创设问题情境,让学生经历探究加速度、质量、力三者关系的过程,可以通过实验测量加速度、力、质量,分别作出表示加速度与力、加速度与质量的关系的图像,根据图像导出加速度与力、质量的关系式.学习过程中引导体会科学的研究方法——控制变量法、图像法的应用,培养观察能力、质疑能力、分析解决问题的能力和交流合作能力.在知识的形成中真正理解牛顿第二定律,同时体验到探究的乐趣.
2.教学目标
(1)经历探究加速度与力和质量的关系的过程.
(2)感悟控制变量法、图像法等科学研究方法的应用.
(3)体验探究物理规律的乐趣.
(4)培养观察能力、质疑能力、分析解决问题的能力和交流合作能力.
3.教学重点、难点
引导学生探究加速度与力和质量的关系的过程是本节课教学的重点,通过实验数据画出图像,根据图像导出加速度与力、质量的关系式是本节的难点.
二、案例设计
(一)复习导入
教师:什么是物体运动状态的改变?物体运动状态发生变化的原因是什么?
学生:物体运动状态的改变就是指物体速度发生了改变,力是使物体运动状态发生变化的原因.
教师:物体运动状态的改变,也就是指物体产生了加速度.加速度大,物体运动状态变化快;加速度小,物体运动状态变化慢.弄清物体的加速度是由哪些因素决定的,具有十分重要的意义.那么物体的加速度大小是由哪些因素决定的呢?请同学们先根据自己的经验对这个问题展开讨论,让学生尝试从身边实例中提出自己的观点.讨论中体会到a跟力F、物体质量m有关.
(二)探究加速度a跟力F、物体质量m的关系
1.定性讨论a、F、m的关系
学生:分小组讨论.
教师:在学生分组讨论的基础上,请各组派代表汇报讨论结果.
引导学生总结出定性的结论:a与F、m有关系,当m一定时F越大,a就越大;当F一定时,m越大,a就越小.
请思考:
在这里为什么要组织学生开展这样的讨论?
2.定量研究a、F、m的关系
(1)设计实验方案
教师在肯定学生回答的基础上,提问:如何定量地研究a与F、m的关系呢?指出刚才大家在定性讨论a、F、m三者关系时,就已经采用了在研究a与F关系时保持m一定,在研究a与m的关系时保持F一定的方法,这种方法叫做控制变量法,它是研究多变量问题的一种重要方法.下面我们可应用这种方法,通过实验对a、F、m的关系进行定量研究.
教师进一步引导,使学生明确要在实验中研究a、F、m的关系必须有办法测出a、F、m.
教师在指出讲台上放有气垫导轨、气源、两个光电开关和与之配套的数字计时器、滑块、细线、砝码、小桶、弹簧秤、托盘天平、一端带有滑轮的长木板、小车、钩码、打点计时器、纸带、刻度尺,并说明每个光电开关与数字计时器一起能测出一定宽度的遮光板通过它的时间进而测出物体的瞬时速度后,让学生根据给定的器材设计实验方案,并在小组讨论基础上,全班交流.在大家互相启发、补充的过程中形成较为完善的方案.
学生:设计出如下实验方案.
方案一以小车、打点计时器、纸带、长木板、细线、小桶、钩码、砝码、刻度尺、天平为器材,研究小车的运动.用天平测出小车的质量m1,测出小桶的质量m2,把小桶与小桶中砝码的总重力m′g当作小车受到的拉力F,从打点计时器打出的纸带上测出△s,由△s=at2计算出小车的加速度a.
方案二以气垫导轨、气源、两个光电开关、数字计时器、滑块、刻度尺、细线、小桶、砝码、钩码、天平为器材研究滑块的运动.用天平测出滑块的质量m1,测出小桶的质量m2,把小桶与小桶中砝码的总重力m′g当作滑块受到的拉力F,用导轨旁边的刻度尺测出两光电开关的距离s0,用刻度尺测出固定在滑块上的遮光片的宽度△s,根据数字计时器给出的遮光片分别通过前后两个光电开关所经历的时间△t1、△t2,由于△ss0,因此可以根据v1=△s/△t1和v2=△s/△t2计算出滑块在两光电开关间运动时的初、末速度,再由计算出滑块的加速度a.
教师引导学生讨论两种方案的可行性,让学生踊跃发表自己见解.
教师:上述两种方案都是可行的.但前一种方案中小车受到的摩擦力较大,实验误差较大,因此就得想办法消除摩擦力的影响,那么如何消除摩擦力呢?建议有兴趣的同学自己利用课余的时间去实验室用前一种方案或其他方案进行实验探索.本节课我们采用上述后一种方案进行实验探究.
教师:不论采用上述哪种方案,我们把小桶与小桶中砝码的总重力mg当作小车(包括上面的钩码)或滑块(包括上面的钩码)受到的拉力,这是有条件的,这条件就是mm′(m为小车与钩码或滑块与钩码的总质量).
(2)进行实验探究
教师:引导学生在气垫导轨上研究a、F、m三者关系,为了让学生能有条不紊地进行实验,用电子幻灯片打出研究内容、实验步骤和数据记录表格如下:
【研究内容】研究m一定时,a与F的关系
【研究步骤】①用天平分别测出单个滑块的质量m1=__________g,小桶质量m2=__________g,则滑块总质量m等于m1加上放在它上面的钩码的质量△m1.
②在桶中放置质量为△m2的砝码,则m′=m2+△m2,当mm′时,认为F=m′g(g取9.8m/s2).
③用刻度尺测出遮光片的宽度△s=__________m,用轨道边上的标尺测出两光电开关之间的距离s0=__________m.
④实验时,保持s0不变,把各次滑块运动中遮光片经过前后光电开关的时间△t1、△t3代入公式计算出各次滑块运动的加速度,并把实验数据填入表11-1.
表11-1研究m一定时,滑块加速度a与其受力F的关系
单个滑块质量
m1=_____g
滑块总质量
m=_____g
小桶质量
m2=_____g
遮光片宽度
△s=_____m
两光电开关间距
s0=_____m实验次数小桶上的砝码质量△m2/g小桶与坛码总质量m′/g△t1/s△t2/s滑块加速度a/(m﹒s-2)滑块受的拉力F/N
1
2
3
4
【实验的结论】____________________________________________________
【研究内容二】研究a与m的关系(F一定)
【研究步骤】①用天平分别测出单个滑块的质量m1=__________g,小桶质量m2=__________g,则各次实验中滑块总质量m等于m1加上放在它上面的钩码的质量△m1.
②在小桶中放置质量为△m2的砝码,则m′=m2+△m2,当mm′时,认为F=m′g(g取9.8m/s2),并保持m不变.
③用刻度尺测出遮光片的宽度△s=__________m,用轨道边上的标尺测出两光电开关之间的距离s0=__________m.
④实验时,保持s0不变,把各次滑块运动中遮光片经过光电开关的时间△t1、△t2代入公式,计算出各次滑块运动的加速度,把实验数据填入表11-2.
表11-2研究滑块加速度a与滑块总质量m的关系(拉力F一定)
单个滑块质量
m2=_____g
小桶质量
m2=_____g
小桶与砝码的总质量
m′=_____g
遮光片宽度
△s=_____m
两光电开关间距
s0=_____m实验次数滑块砝码质量△m1/g△t1/s△t2/s滑块加速度a/(m﹒s-2)滑块与砝码总质量m/g
1
2
3
4
【实验的结论】____________________________________________________
说明在简要说明数字计时器的使用方法,强调实验过程应使气垫导轨保持水平,两光电开关间距要尽可能大些,尽可能使m′远大于m(如果m′≥20m,则可认为m′m)等注意事项后,请两位学生上台操作并报告测量数据,其他学生边观察边在课前印发的实验数据记录表(表11-1、表11-2)上填上实验测量数据.
教师:把全班学生分成8个小组,第1组~第4组学生分别完成(表11-1)中从实验次数1~4各项目的计算与填写,第5组~第8组学生分别完成(表11-2)中从实验次数1~4各项目的计算与填写.
教师:让学生反馈计算结果,并填入电子幻灯片(表11-1)、(表11-2)的对应栏目中.
教师:引导学生对表11-1的数据①通过直接观察;②通过在坐标纸上画出a-F图像进行分析,得出a∝F(m一定时)的结论.
在描点画图时,让学生体会为什么要让描出的点尽可能多地分布在某一直线的两侧,尝试说出实验误差的原因.
教师:引导学生对表11-2的数据①通过直接观察②通过在坐标纸上画出a-m图像进行分析,只能得出当F一定时,m越大a就越小的结论.
教师:能不能就此马上断言a与m成反比?让学生展开讨论.
教师:在引导学生进行全班交流的基础上,问学生能不能猜想a与m成反比?
如何证明这种猜想是否正确?请思考讨论.
学生:可以画出a与图像,看它是否为过原点的直线.
学生:还可以通过计算a与m的比值来判断.
教师:让学生分组计算出对应各次实验的,并在全班反馈填人表11-2后,在坐标纸上作出a-图像.
学生:确实实验得到的直线是接近过原点的,实验误差允许范围内a与m是成反比(F一定时)的.
说明这里开展一系列讨论的目的是为了让学生体会从a-m图像转化到a-图像的意义,认识图像法描述物理规律的作用.
教师:本实验只是让我们对于自然规律的探究有所体验,实际上一个规律的发现不可能是几次简单的测量实验就能得出,还需要通过大量的实验事实来论证.
3.牛顿第二定律
通过大量的实验探究得到加速度与力、质量的关系是:
当物体的质量一定时,物体的加速度跟所受的作用力成正比,跟物体的质量成反比,这就是牛顿第二定律.
加速度和力都是矢量,它们都有方向,牛顿第二定律不但确定了加速度和力的大小之间的关系,还确定了它们的方向之间的关系:加速度的方向跟引起这个加速度的力的方向相同.
牛顿第二定律也可用数学公式来表示:
a∝F/m或F∝ma
上式可改写为等式:F=kma,式中的k是比例常数.
教师指出:
(1)如果各物理量都采用国际单位,k=1;
(2)力的单位“牛顿”是根据牛顿第二定律定义的.
定义:使质量1kg的物体产生1m/s2的加速度所需要的力,叫做1N.即1N=1kgm/s2
可见,如果都用国际制单位,则k=1.
牛顿第二定律可简化为
F=ma
这就是牛顿第二定律的数学表达式.
三、案例评析
本节课教学设计的思路是:首先提出物体的加速度是由哪些因素决定的这个问题,引导学生根据自己已有的经验进行定性探究,在此基础上,进一步引导学生应用控制变量法进行定量探究,让学生经历自己设计实验方案、观察实验现象、记录实验数据、全班合作处理实验数据、分析实验数据得出结论的过程,最后总结出牛顿第二定律的数学表达式.
本节课教学设计为创设问题情境,让学生主动参与探究加速度、质量、力三者关系的全过程,在实验方案设计分析、应用图像探究规律等问题解决的过程中较为关注学生自己的观念,让学生在问题讨论中完善自己的观点,学习应用物理和数学的方法研究自然规律,有效地培养学生的实验设计能力、观察能力、分析能力、解决问题的能力以及合作交流的能力.教师在实验完成后的一句话“本实验只是让我们对于自然规律的探究有所体验,实际上一个规律的发现不可能是几次简单的测量实验就得出,还需要通过大量的实验事实来论证”充分体现了注重对学生进行科学态度和科学精神的教育.对于实验的方案可以根据学校、学生的情况,选择一种或两种或三种做,让学生比较实验的结果,对实验进行多方面的反思.
四、相关链接
探究牛顿第二定律中的图像问题
典型例题1在“探究牛顿第二定律”实验中,研究加速度与力的关系时得到如图11-1所示的图像,试分析其原因.
分析:在做a-F关系实验时,用砂和砂桶所受重力mg代替了小车所受的拉力F,如图11-2所示:
事实上,砂和砂桶的重力mg与小车所受的拉力F是不相等的,这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别.由图像经过原点知,小车所受的摩擦力已被平衡.设小车实际加速度为a,由牛顿第二定律可得
mg=(m+m0)a即
若视F=mg,设这种情况下小车的加速度为a′,则a′=mg/m0.在本实验中,m0保持不变,与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小.理想情况下,加速度a与实际加速度a差值为
上式可见,m取不同值,△a不同,m越大,△a越大,当m0m时,a≈a′△a→0,这就是要求该实验必须满足m0m的原因所在.
本题误差是由于砂及砂桶质量较大,不能很好满足m0m造成的.
点评:本实验的误差来源:因原理不完善引起的误差,本实验用砂和砂桶所受的总重力mg代替小车的拉力,而实际小车所受的拉力要小于砂和砂桶所受的总重力,这个砂和砂桶的总质量越接近小车和砝码的总质量,误差越大;反之砂和砂桶的总质量越小于小车和砝码的总质量,由此引起的误差就越小.因此满足砂和砂桶的总质量m远小于小车和砝码的总质量m0的目的就是为了减小因实验原理不完善而引起的误差.此误差可因为mm0而减小,但不可能消去此误差.
典型例题2在利用打点计时器和小车做“探究牛顿第二定律”的实验时,实验前为什么要平衡摩擦力?应当如何平衡摩擦力?
分析:牛顿第二定律表达式F=ma中的F,是物体所受的合外力,在本实验中,如果不采用一定的办法平衡小车及纸带所受的摩擦力,小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受的摩擦力的合力.因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大;若计摩擦力,其大小的测量又很困难.在研究加速度a和质量m的关系时,由于随着小车上的砝码增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力.
应如何平衡摩擦力?怎样检查平衡的效果?有人是这样操作的:把如图11-3所示装置中的长木板的右端垫高一些,使之形成一个斜面,然后把实验用小车放在长木板上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动情况,看其是否作匀速直线运动.如果基本可看作匀速直线运动,就认为平衡效果较好.这样操作有两个问题:一是在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力,在上面的做法中没有考虑后两个阻力;二是检验平衡效果的方法不当,靠眼睛的直接观察判断小车是否做匀速直线运动是很不可靠的.正确的做法是:将长木板的末端(如图11-3中的右端)垫高一些,把小车放在斜面上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动,当用眼睛直接观察可认为小车做加速度很小的直线运动以后,保持长木板和水平桌面的夹角不动,并装上打点计时器及纸带,在小车后拖纸带、打点计时器开始打点的情况下,给小车一个沿斜面向下的初速度,使小车沿斜面向下运动.取下纸带后,如果在纸带上打出的点的间隔基本上均匀,就表明小车受到的阻力跟它所受的重力沿斜面的分力平衡.
点评:
(1)打点计时器工作时,振针对纸带的阻力是周期性变化的,所以,难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动也不是严格的匀速直线运动,纸带上的点的间隔也不可能完全均匀,所以上面提到要求基本均匀.
(2)在实验前对摩擦力进行了平衡以后,实验中需在小车上增加或减少砝码,因为改变了小车对木板的压力,从而使摩擦力出现了变化,有没有必要重新平衡摩擦力?我们说没有必要,因为由此引起的摩擦力变化是极其微小的.从理论上讲,在小车及其砝码质量变化时,由力的分解可知,重力沿斜面向下的分力G1和垂直斜面方向的分力G2(大小等于对斜面的压力),在斜面倾角不变的情况下是成比例增大或减小的,进而重力沿斜面方向的分力G1和摩擦力f成比例变化,仍能平衡.但实际情况是,纸带所受阻力F′f,在平衡时有G1=Ff+F′f,而当F′f和Ff成比例变化后,前式不再相等,因而略有变化.另外,小车的轴与轮的摩擦力也会略有变化,在我们的实验中,质量变化较小,所引起的误差可忽略不计.
典型例题3用如图11-4(a)所示的装置研究质量、定时加速度与作用力的关系.实验中认为细绳对小车的作用力F等于砂和桶所受的总重力,用改变砂的质量的办法来改变对小车的作用力F,用打点计时器测出小车的加速度a,得出若干组F和a的数值,然后根据测得的数据作a-F图线.一学生作出如图11-4(b)所示的图线,发现横轴上的截距OA较大,明显地超出了偶然误差的范围,这是由于实验中没有进行什么步骤?
分析:这是一个验证性的实验,作出的a-F图线理应通过原点,表明质量m0一定时,加速度a与F成正比,作出图11-4(b)所示的图线,表示什么意思呢?设截距OA=Ff,现变换一下坐标原点,把原点移至A点,纵坐标仍表示加速度a,横坐标表示F-Ff,设直线的斜率为,则图11-4(c)表示
a=k(F-Ff),F-Ff=m0a
即:由牛顿第二定律可知,在某同学所做的这个实验中,合外力并不是细绳对小车的作用力F,而是F-Ff,显然,这个f是水平长木板对小车的摩擦力,这个摩擦力在实验中是不能忽略的,实验中需平衡此摩擦力,采用的办法是:“在长木板的不带定滑轮的一端下面垫一块木板,反复移动木板的位置,直到小车在斜面上运动时可以保持匀速直线运动状态,这时小车拖着纸带运动时受到的摩擦阻力恰好与小车所受的重力在斜面上的分力平衡”.(见高中课本)这时小车所受的合外力F-Ff+m0gsinθ=F,画出的图线应当通过原点,该同学作出如图11-4乙所示的a-F图线,是因为他在实验中没有进行平衡摩擦力这一步骤.
典型例题4利用例3图11-4(a)所示的装置做“探究牛顿第二定律”实验,甲同学根据实验数据画出的小车的加速度。和小车所受拉力F的图像为图11-5中的直线Ⅰ,乙同学画出的a-F图像为图11-5中的直线Ⅱ.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大,明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是()
A.实验前甲同学没有平衡摩擦力
B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了
C.实验前乙同学没有平衡摩擦力
D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了
分析:图像Ⅰ在纵轴上有较大的截距,说明在绳对小车的拉力F=0(还没有挂砂桶)的情况下,小车就有了沿长木板向下的加速度a0.设长木板与水平桌面间的夹角为θ,小车所受的重力mg沿长木板向下的分力应为mgsinθ,长木板对小车的摩擦阻力应为μmgcosθ.又设运动系统所受的其他阻力为Ff(可视为定值),则应有mgsinθ-(μmgcosθ+Ff)=ma0,在此式中m、g、μ、Ff为定值.如果适当减小θ值,可使sinθ减小而cosθ值增大,实现a0=0,图像起点回到坐标系的原点.图像Ⅱ在横轴上有较大的截距,说明乙同学在实验前没有平衡摩擦力,因此在绳对小车有了较大的拉力F以后,小车的加速度仍然为零,其原因如例3所述.由上述分析可知,B、C选项的叙述正确.
分析:(1)关键分析纵截距及其物理意义;(2)在实验中平衡摩擦力的标准是物体在不挂砂桶时匀速运动,即所连纸带上的点应是均匀分布的.

4.3牛顿第二定律


4.3牛顿第二定律

[教学目标]
一、知识与技能
1、掌握牛顿第二定律的文字内容和数学公式
2、理解公式中各物理量的意义及相互联系
3、知道在国际单位制中力的单位“牛顿”是怎样定义的
4、会用牛顿第二定律的公式进行有关的计算
二、过程与方法
1、以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律
2能从实际运动中抽象出模型并用第二定律加以解决
三、情感态度与价值观
1、渗透物理学研究方法的教育
2、认识到由实验归纳总结物理规律是物理学研究的重要方法
[教学重点]
1、牛顿第二定律
2、牛顿第二定律的应用
[教学难点]
牛顿第二定律的应用
[课时安排]
1课时
[教学过程]
引入
师:牛顿第一定律告诉我们,力是改变物体运动状态的原因即产生加速度的原因,加速度同时又与物体的质量有关。上一节课的探究实验我们已经看到,小车的加速度可能与所受的合外力成正比,与物体的质量成反比。大量实验和观察到的事实都能得出同样的结论,由此可以总结出一般性的规律:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。这就是牛顿第二定律。
一、牛顿第二定律:
定义:物体加速度的大小跟合外力成正比,跟物体的质量成反比,加速度的方向与合外力的方向相同。
比例式:或。
等式:其中k是比例系数。(公式中的F是合外力,而ma是作用效果,不要看成力,它们只是大小相等)
力的单位
K是比例常数,那k应该是多少呢?
这里要指出的是,在17世纪,人类已经有了一些基本物理量的计量标准,但还没有规定多大的力为一个单位力,当然也没有力的单位牛顿。科学家们在做与力有关的实验时并没有准确计算力的大小,利用的仅仅是简单的倍数关系。比如当挂一个钩码时,质量为1kg的小车产生大小为2m/s2的加速度,当挂两个钩码时,此时小车受力是第一次的两倍,实验结果是小车产生大小为4m/s2的加速度,由此可以得出物体的加速度与所受的合外力成正比(因为还没有规定一个单位的力是多大,所以你也无法知道一个钩码是几个单位的力。比如只有当我们规定了多长的距离为一个单位长度(1m)后才能知道一根棒有几个单位长度即几米。)。
由于单位力的大小还没有规定,所以k的选择有一定的任意性,只要是常数,它就能正确表示F与m、a之间的比例关系。(或者反过来讲,如果我们当时已经规定了力的单位为N,并且规定一个钩码的重量为1N,那么公式中的k就不具有随意性。在计算时质量的单位用kg,加速度的单位用m/s2,当Fma三者都取值为单位1时有:1N=k1kg1m/s2而我们知道1kg1m/s2表示使质量为1kg的物体产生1m/s2的力,对照上例应该是半个钩码,那k就应该等于2。如果当时规定两个钩码重量为1N时,那k应该是4。而当规定半个钩码重为1N时,k就是1了。所以由于没有规定1N的力是多大,k的值任意的,只要常数就行。
既然k是任意取的,那取1将会使公式最简便。当k值取定后,力的单位理所当然也定下来了:一个单位力=11kg1m/s2,即规定了1N的力是使质量为1kg的物体产生1m/s2加速度的力。用手托住两个鸡蛋大约就是1N。
从上可知力的单位是kgm/s2,后来为了纪念牛顿,把kgm/s2称做“牛顿”,用N表示。
公式:
例1、一物体质量为1kg的物体静置在光滑水平面上,0时刻开始,用一水平向右的大小为2N的力F1拉物体,则
(1)物体产生的加速度是多大?2S后物体的速度是多少?
(2)若在3秒末给物体加上一个大小也是2N水平向左的拉力F2,则物体的加速度是多少?4秒末物体的速度是多少?
(3)3S内物体的加速度2m/s2是由力F1产生的,3S后物体的加速度为0,那是说3S后F1不再产生加速度了?

解:(1)受力分析知:物体所受的合外力为F1=2N,则根据公式有;从0时刻开始做初速度为0,加速度为2m/s2的匀加速直线运动,据得2S末速度为4m/s。
(2)3S末加上F2后,物体所受的合外力为0,则据有加速度为0;从3S末开始物体做匀速直线运动,4S末速度仍是4m/s。
(3)可以用平形四边形定则进行分解合成的不仅仅是力,所有的矢量均可以用平形四边形定则进行分解合成,当然也包括加速度。3S后F1仍然产生2m/s2的加速度,不过F1产生的加速度与F2产生的加速度相互抵消,所以总的加速度是0。
牢记:物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就像其他力不存在一样,这个性质叫做力的独立性原理。物体的合加速度等于各个分力分别产生的加速度的矢量和;也等于合外力与质量的比值。
例2:光滑水面上,一物体质量为1kg,初速度为0,从0时刻开始受到一水平向右的接力F,F随时间变化图如下,要求作出速度时间图象。

牢记:加速度与合外力存在着瞬时对应关系:某一时刻的加速度总是与那一时刻的合外力成正比;有力即有加速度;合外力消失,加速度立刻消失;所以加速度与力一样,可以突变,而速度是无法突变的。
例3、牛顿第一定律是牛顿第二定律的特例吗?
牢记:牛顿第一定律说明物体的运动不需要力来维持,力是改变物体运动状态的原因。牛顿第一定律定义了力。正因为知道了在没有力的情况下物体是静止或匀速的,人们才能去研究物体在有力的情况下是如何运动的。所以牛顿第一定律是牛顿第二定律的基础,牛顿第二定律是牛顿第一定律的扩展。
总结分析
1、F与a的同向性。
2、F与a的瞬时性。
3、力的独立性原理。
4、F可以突变,a可以突变,但v不能突变。
5、牛二只适用于惯性参考系
6、牛二适用于宏观低速运动的物体
7、是定义式、度量式;是决定式。两个加速度公式,一个是纯粹从运动学(现象)角度来研究运动;一个从本质内因进行研究。就像农民看云识天气,掌握天气规律,但并不知道云是如何形成的,为什么不同的云代表不同的天气。就像知道有加速度却不知道为何会有。
8、不能认为牛顿第一定律是牛顿第二定律在合外力为0时的特例。
例4、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?
答:没有矛盾,从角度来看,因为提不动,所以静止,则合外力为0,所以加速度也为0;从角度来看,物体受三个力,支持力、重力、向上提的力。这三个力产生的加速度相互抵消,所以合加速度也是0。
二、用牛顿第二定律解题的方法和步骤
1、明确研究对象(隔离或整体)
2、进行受力分析和运动状态分析,画出示意图
3、规定正方向或建立直角坐标系,求合力F合
4、列方程求解
①物体受两个力:合成法
②物体受多个力:正交分解法(沿运动方向和垂直于运动方向分解)
(运动方向)
(垂直于运动方向)

文章来源:http://m.jab88.com/j/71863.html

更多

最新更新

更多