作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生更容易听懂所讲的内容,帮助高中教师能够井然有序的进行教学。高中教案的内容要写些什么更好呢?以下是小编为大家精心整理的“牛顿第二定律”,仅供您在工作和学习中参考。
教学目标
知识目标
(1)通过演示实验认识加速度与质量和和合外力的定量关系;
(2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式;
(3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律;
(4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系;
(5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题.
能力目标
通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.
情感目标
培养认真的科学态度,严谨、有序的思维习惯.
教学建议
教材分析
1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系.
2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式.
3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性.
教法建议
1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小.
2、通过典型例题让学生理解牛顿第二定律的确切含义.
3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式.
教学设计示例
教学重点:牛顿第二定律
教学难点:对牛顿第二定律的理解
示例:
一、加速度、力和质量的关系
介绍研究方法(控制变量法):先研究在质量不变的前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系.介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力.介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比.
以上内容可根据学生情况,让学生充分参与讨论.本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验.
1、加速度和力的关系
做演示实验并得出结论:小车质量相同时,小车产生的加速度与作用在小车上的力成正比,即,且方向与方向相同.
2、加速度和质量的关系
做演示实验并得出结论:在相同的力F的作用下,小车产生的加速度与小车的质量成正比,即.
二、牛顿第二运动定律(加速度定律)
1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.即,或.
2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N.则公式中的=1.(这一点学生不易理解)
3、牛顿第二定律:
物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.
数学表达式为:.或
4、对牛顿第二定律的理解:
(1)公式中的是指物体所受的合外力.
举例:物体在水平拉力作用下在水平面上加速运动,使物体产生加速度的合外力是物体
所受4个力的合力,即拉力和摩擦力的合力.(在桌面上推粉笔盒)
(2)矢量性:公式中的和均为矢量,且二者方向始终相同.由此在处理问题时,由合外力的方向可以确定加速度方向;反之,由加速度方向可以找到合外力的方向.
(3)瞬时性:物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化.
举例:静止物体启动时,速度为零,但合外力不为零,所以物体具有加速度.
汽车在平直马路上行驶,其加速度由牵引力和摩擦力的合力提供;当刹车时,牵引力突然消失,则汽车此时的加速度仅由摩擦力提供.可以看出前后两种情况合外力方向相反,对应车的加速度方向也相反.
(4)力和运动关系小结:
物体所受的合外力决定物体产生的加速度:
当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相同——→物体做匀加速直线运动
当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相反——→物体做匀减速直线运动
以上小结教师要带着学生进行,同时可以让学生考虑是否还有其它情况,应满足什么条件.
探究活动
题目:验证牛顿第二定律
组织:2-3人小组
方式:开放实验室,学生实验.
评价:锻炼学生的实验设计和操作能力.
《牛顿第二定律》教案
【教学目标】:1.理解牛顿第二定律的内容、表达式和适用范围.2.学会分析两类动力学问题.
【教学重点】:理解牛顿第二定律的内容、表达式和适用范围
【教学难点】:.学会分析两类动力学问题.
【教学方法】:讲练结合
一、牛顿第二定律
[基础导引]
由牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它.这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?
[知识梳理]
1.内容:物体加速度的大小跟它受到的作用力成________、跟它的质量成________,加速度的方向跟____________相同.
2.表达式:________.
3.适用范围
(1)牛顿第二定律只适用于________参考系(相对地面静止或____________运动的参考系).
(2)牛顿第二定律只适用于________物体(相对于分子、原子)、低速运动(远小于光速)的情况.
二、两类动力学问题
[基础导引]
以15m/s的速度行驶的无轨电车,在关闭电动机后,经过10s停了下来.电车的质量是4.0×103kg,求电车所受的阻力.
[知识梳理]
1.动力学的两类基本问题
(1)由受力情况判断物体的____________
(2)由运动情况判断物体的____________.
2.解决两类基本问题的方法:以__________为桥梁,由运动学公式和____________________列方程求解.
:解决两类动力学问题的关键是什么?
三、力学单位制
[基础导引]
如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做的功W=Fl.我们还学过,功的单位是焦耳(J).请由此导出焦耳与基本单位米(m)、千克(kg)、秒(s)之间的关系.
[知识梳理]
1.单位制由基本单位和导出单位共同组成.
2.力学单位制中的基本单位有________、________、时间(s).
3.导出单位有________、________、________等.
探究一牛顿第二定律的理解
例1牛顿第二定律导学案如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?
牛顿第二定律导学案总结
利用牛顿第二定律分析物体运动过程时应注意以下两点:
(1)a是联系力和运动的桥梁,根据受力条件,确定加速度,以加速度
确定物体速度和位移的变化.(2)
老师职责的一部分是要弄自己的教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,未来工作才会更有干劲!有多少经典范文是适合教案课件呢?为满足您的需求,小编特地编辑了“《牛顿第二定律》导学案”,仅供参考,希望能为您提供参考!
《牛顿第二定律》导学案
【学习目标】1、掌握牛顿第二定律的文字内容和数学公式
2、知道在国际单位制中力的单位“牛顿”是怎样定义的。
3、会用牛顿第二定律的公式进行有关的计算
【学习重点】1、掌握牛顿第二定律的文字内容和数学公式
2、会用牛顿第二定律的公式进行有关的计算
【学习难点】会用牛顿第二定律的公式进行有关的计算
【自主学习】
一、牛顿第二定律的得出(阅读教材p74页独立完成下列填空)
1、一定时,加速度与合外力成比;即:
2、一定时,加速度与质量成比;即:
3、综合以上两个因素,加速度与力和质量的关系表达为;
注意:实际物体所受的力往往不止一个,这时式中F指的是物体所受的合力
4、如果k=1,这样牛顿第二定律可以表达为。
5、力的国际单位是,他是怎样规定的:。
二、牛顿第二定律深入认识
问题1、牛顿第二定律中指出加速度与力成正比,能否说成力与加速度成正比,为什么?
问题2、从牛顿第二定律的内容分析,F、m、a是对于几个物体而言的?
问题3、一质量为m的物体静止在光滑水平面上,试讨论回答以下问题?
(1)某一时刻静止物体受水平向右的恒力F,此时物体的加速度大小为多少?方向怎样?此时速度大小为多少?
(2)进过一段时间,物体速度为v此时撤去力F,对物体施加一方向向左的恒力3F,此时物体的加速度大小多少?方向怎样?此时速度大小方向又是怎样?
(3)第(2)问中如果不撤去F,对物体再施加一个方向向左的恒力3F,此时物体的加速度大小多少?方向怎样?
教师提问:还可以用什么方法求加速度
三、【合作探究】
1、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度。可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?
2、质量不同的物体,所受的重力不一样,它们自由下落时加速度却是一样的。你怎样解释?
3、(小组讨论)总结牛顿第二定律应用时的一般步骤:
四、【课堂练习】
1、在牛顿第二定律公式F=kma中,有关比例常数k的说法正确的是:()
A、在任何情况下都等于1
B、k值是由质量、加速度和力的大小决定的
C、k值是由质量、加速度和力的单位决定的
D、在国际单位制中,k的数值一定等于1
2、关于速度、加速度、合外力的关系下列说法正确的是()
A.物体的速度越大则加速度越大,所受合外力也越大
B.物体的速度为零则加速度为零,所受合外力也为零
C.物体的速度为零而加速度可能很大,所受合外力也
可能很大;
D.物体的速度很大而加速度可能为零,所受合外力也
可能为零。
3、F合和a的瞬时对应和因果对应关系正确的是()
A.只有物体受到力的作用,物体才具有加速度
B.力恒定不变,加速度也恒定不变
C.力随着时间改变,加速度也随着时间改变
D.力停止作用,加速度也随即消失
五、【作业布置】
课本P78页课后《问题与练习》第2、3题。
一名合格的教师要充分考虑学习的趣味性,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助授课经验少的高中教师教学。你知道怎么写具体的高中教案内容吗?考虑到您的需要,小编特地编辑了“牛顿第二定律的应用”,希望对您的工作和生活有所帮助。
§4.4牛顿第二定律的应用―――连接体问题
【学习目标】
1.知道什么是连接体与隔离体。2.知道什么是内力和外力。
3.学会连接体问题的分析方法,并用来解决简单问题。
【自主学习】
一、连接体与隔离体
两个或两个以上物体相连接组成的物体系统,称为。如果把其中某个物体隔离出来,该物体即为。
二、外力和内力
如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的力,而系统内各物体间的相互作用力为。
应用牛顿第二定律列方程不考虑力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的力。
三、连接体问题的分析方法
1.整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。运用列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用法求出,再用法求。
【典型例题】
例1.两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对物体
B的作用力等于()
A.B.C.FD.
扩展:1.若m1与m2与水平面间有摩擦力且摩擦因数均为μ则对B作用力等于。
2.如图所示,倾角为的斜面上放两物体m1和m2,用与斜面
平行的力F推m1,使两物加速上滑,不管斜面是否光滑,两物体
之间的作用力总为。
例2.如图所示,质量为M的木板可沿倾角为θ的光滑斜面下滑,
木板上站着一个质量为m的人,问(1)为了保持木板与斜面相
对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,
木板运动的加速度是多少?
【针对训练】
1.如图光滑水平面上物块A和B以轻弹簧相连接。在水平拉力F作用下以加速度a作直线运动,设A和B的质量分别为mA和mB,当突然撤去外力F时,A和B的加速度分别为()
A.0、0B.a、0
C.、D.a、
2.如图A、B、C为三个完全相同的物体,当水平力F作用
于B上,三物体可一起匀速运动。撤去力F后,三物体仍
可一起向前运动,设此时A、B间作用力为f1,B、C间作
用力为f2,则f1和f2的大小为()
A.f1=f2=0B.f1=0,f2=FC.f1=,f2=D.f1=F,f2=0
3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间
的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的
加速度前进?(g=10m/s2)
4.如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因
数μ=0.22。在箱子顶板处系一细线,悬挂一个质量m=1.0kg
的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直
方向θ=30°角,则F应为多少?(g=10m/s2)
【能力训练】
1.如图所示,质量分别为M、m的滑块A、B叠放在固定的、
倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数
分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,
B受到摩擦力()
A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ
2.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球。小球上下振动时,框架始终
没有跳起,当框架对地面压力为零瞬间,小球的加
速度大小为()
A.gB.C.0D.
3.如图,用力F拉A、B、C三个物体在光滑水平面上运动,现在中间的B物体上加一个小物体,它和中间的物体一起运动,且原拉力F不变,那么加上物体以后,两段绳中的拉力Fa和Fb的变化情况是()
A.Ta增大B.Tb增大
C.Ta变小D.Tb不变
4.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量
为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,
竿对“底人”的压力大小为()
A.(M+m)gB.(M+m)g-maC.(M+m)g+maD.(M-m)g
5.如图,在竖直立在水平面的轻弹簧上面固定一块质量不计
的薄板,将薄板上放一重物,并用手将重物往下压,然后突
然将手撤去,重物即被弹射出去,则在弹射过程中,(即重
物与弹簧脱离之前),重物的运动情况是()
A.一直加速B.先减速,后加速
C.先加速、后减速D.匀加速
6.如图所示,木块A和B用一轻弹簧相连,竖直放在木块
C上,三者静置于地面,它们的质量之比是1:2:3,设所有
接触面都光滑,当沿水平方向抽出木块C的瞬时,A和B
的加速度分别是aA=,aB=。
7.如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块
A的顶端P处,细线的另一端拴一质量为m的小球。当滑块至
少以加速度a=向左运动时,小球对滑块的压力等
于零。当滑块以a=2g的加速度向左运动时,线的拉力大小
F=。
8.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力FA与FB之比为多少?
9.如图所示,质量为80kg的物体放在安装在小车上的水平磅称上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角θ为多少?物体对磅秤的静摩擦力为多少?
10.如图所示,一根轻弹簧上端固定,下端挂一质量为mo的平盘,盘中有一物体,质量为m,当盘静止时,弹簧的长度比自然长度伸长了L。今向下拉盘使弹簧再伸长△L后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少?
【学后反思】
参考答案
典型例题:
例1.分析:物体A和B加速度相同,求它们之间的相互作用力,采取先整体后隔离的方法,先求出它们共同的加速度,然后再选取A或B为研究对象,求出它们之间的相互作用力。
解:对A、B整体分析,则F=(m1+m2)a
所以
求A、B间弹力FN时以B为研究对象,则
答案:B
说明:求A、B间弹力FN时,也可以以A为研究对象则:
F-FN=m1a
F-FN=
故FN=
对A、B整体分析
F-μ(m1+m2)g=(m1+m2)a
再以B为研究对象有FN-μm2g=m2a
FN-μm2g=m2
提示:先取整体研究,利用牛顿第二定律,求出共同的加速度
=
再取m2研究,由牛顿第二定律得
FN-m2gsinα-μm2gcosα=m2a
整理得
例2.解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F应沿斜面向上,故人应加速下跑。现分别对人和木板应用牛顿第二定律得:
对木板:Mgsinθ=F。
对人:mgsinθ+F=ma人(a人为人对斜面的加速度)。
解得:a人=,方向沿斜面向下。
(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a木,则:
对人:mgsinθ=F。
对木板:Mgsinθ+F=Ma木。
解得:a木=,方向沿斜面向下。即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动。
答案:(1)(M+m)gsinθ/m,(2)(M+m)gsinθ/M。
针对训练
1.D2.C
3.解:设物体的质量为m,在竖直方向上有:mg=F,F为摩擦力
在临界情况下,F=μFN,FN为物体所受水平弹力。又由牛顿第二定律得:
FN=ma
由以上各式得:加速度
4.解:对小球由牛顿第二定律得:mgtgθ=ma①
对整体,由牛顿第二定律得:F-μ(M+m)g=(M+m)a②
由①②代入数据得:F=48N
能力训练
1.BC2.D3.A4.B5.C6.0、7.g、
8.解:当力F作用于A上,且A、B刚好不发生相对滑动时,对B由牛顿第二定律得:μmg=2ma①
对整体同理得:FA=(m+2m)a②
由①②得
当力F作用于B上,且A、B刚好不发生相对滑动时,对A由牛顿第二定律得:μμmg=ma′③
对整体同理得FB=(m+2m)a′④
由③④得FB=3μmg
所以:FA:FB=1:2
9.解:取小车、物体、磅秤这个整体为研究对象,受
总重力Mg、斜面的支持力N,由牛顿第二定律得,
Mgsinθ=Ma,∴a=gsinθ取物体为研究对象,受力
情况如图所示。
将加速度a沿水平和竖直方向分解,则有
f静=macosθ=mgsinθcosθ①
mg-N=masinθ=mgsin2θ②
由式②得:N=mg-mgsin2θ=mgcos2θ,则cosθ=代入数据得,θ=30°
由式①得,f静=mgsinθcosθ代入数据得f静=346N。
根据牛顿第三定律,物体对磅秤的静摩擦力为346N。
10.解:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。
将盘与物体看作一个系统,静止时:kL=(m+m0)g……①
再伸长△L后,刚松手时,有k(L+△L)-(m+m0)g=(m+m0)a……②
由①②式得
刚松手时对物体FN-mg=ma
则盘对物体的支持力FN=mg+ma=mg(1+)
文章来源:http://m.jab88.com/j/6546.html
更多